Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 3
204
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Explosive boiling of liquid argon films on flat and nanostructured surfaces

&
Pages 94-105 | Received 20 Apr 2020, Accepted 28 May 2020, Published online: 17 Jun 2020

References

  • D. L. Frost, “Dynamics of explosive boiling of a droplet,” Phys. Fluids, vol. 31, no. 9, pp. 2554–2561, 1988. DOI: 10.1063/1.866608.
  • X. Yin, C. Hu, M. Bai, and J. Lv, “Effects of depositional nanoparticle wettability on explosive boiling heat transfer: a molecular dynamics study,” Int. Commun. Heat Mass Transf., vol. 109, pp. 104390, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104390.
  • J. Wang, “Preliminary analysis of rapid boiling heat transfer,” Int. Commun. Heat Mass Transf., vol. 27, no. 3, pp. 377–388, 2000. DOI: 10.1016/S0735-1933(00)00118-4.
  • H. R. Seyf and Y. Zhang, “Normal and explosive boiling of argon on nanostructured copper surface: a molecular dynamics study,” ASME Heat Transfer Summer Conference, Minneapolis, USA. pp. V002T07A040, 2013. DOI: 10.1115/HT2013-17002.
  • R. Visentini, C. Colin, and P. Ruyer, “Experimental investigation of heat transfer in transient boiling,” Exp. Therm. Fluid Sci., vol. 55, pp. 95–105, 2014. DOI: 10.1016/j.expthermflusci.2014.02.026.
  • A. V. Reshetnikov, K. A. Busov, O. A. Kapitunov, and V. N. Skokov, “Explosive boiling-up in a swirl jet of superheated ethanol,” Int. J. Heat Mass Transf., vol. 149, pp. 119210, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119210.
  • A. E. Zubko and A. A. Samokhin, “On the relation between the continuum and molecular dynamic descriptions of the explosive boiling of a liquid film on heated substrate,” Phys. Wave Phen., vol. 26, no. 4, pp. 274–279, 2018. DOI: 10.3103/S1541308X18040039.
  • Y. Dou, L. V. Zhigilei, N. Winograd, and B. J. Garrison, “Explosive boiling of water films adjacent to heated surfaces: a microscopic description,” J. Phys. Chem. A, vol. 105, no. 12, pp. 2748–2755, 2001. DOI: 10.1021/jp003913o.
  • A. Faghri and Y. Zhang, Transport Phenomena in Multiphase System. Burlington, MA, USA: Elsevier, 2006,
  • J. J. Ren, Z. X. Ye, S. Q. Fan, and M. S. Bi, “Analysis of the explosive boiling process of liquefied gases due to rapid depressurization,” J. Loss Prevent. Proc., vol. 49, pp. 845–851, 2017. DOI: 10.1016/j.jlp.2016.12.004.
  • R. K. Cavin, V. V. Zhirnov, D. J. C. Herr, A. Avila, and J. Hutchby, “Research directions and challenges in nanoelectronics,” J. Nanopart. Res., vol. 8, no. 6, pp. 841–858, 2006. DOI: 10.1007/s11051-006-9123-4.
  • A. Bar-Cohen, M. Arik, and M. Ohadi, “Direct liquid cooling of high flux micro and nano electronic components,” Proc. IEEE, vol. 94, no. 8, pp. 1549–1570, 2006. DOI: 10.1109/JPROC.2006.879791.
  • R. W. van Gils, D. Danilov, P. H. L. Notten, M. F. M. Speetjens, and H. Nijmeijer, “Battery thermal management by boiling heat-transfer,” Energ. Convers. Manage., vol. 79, pp. 9–17, 2014. DOI: 10.1016/j.enconman.2013.12.006.
  • X. Huai, G. Wang, R. Jin, T. Yin, and Y. Zou, “Microscopic explosive boiling induced by a pulsed-laser irradiation,” Heat Mass Transf., vol. 45, no. 1, pp. 117–126, 2008. DOI: 10.1007/s00231-008-0400-x.
  • S. Georgiou and A. Koubenakis, “Laser-induced material ejection from model molecular solids and liquids: mechanisms, implications, and applications,” Chem. Rev., vol. 103, no. 2, pp. 349–393, 2003. DOI: 10.1021/cr010429o.
  • Y. D. Varlamov, Y. P. Meshcheryakov, M. P. Predtechenskii, S. I. Lezhnin, and S. N. Ul’yankin, “Specific features of explosive boiling of liquids on a film microheater,” J. Appl. Mech. Tech. Phys., vol. 48, no. 2, pp. 213–220, 2007. DOI: 10.1007/s10808-007-0028-5.
  • O. A. Kabov, E. Y. Gatapova, and D. V. Zaitsev, “Cooling technique based on evaporation of thin and ultra thin liquid films,” 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, USA, pp. 520–527, 2008. DOI: 10.1109/ITHERM.2008.4544312.
  • S. Zhang, W. Yuan, Y. Tang, J. Chen, and Z. Li, “Enhanced flow boiling in an interconnected microchannel net at different inlet subcooling,” Appl. Therm. Eng., vol. 104, pp. 659–667, 2016. DOI: 10.1016/j.applthermaleng.2016.05.117.
  • X. Gu and H. M. Urbassek, “Atomic dynamics of explosive boiling of liquid-argon films,” Appl. Phys. B, vol. 81, no. 5, pp. 675–679, 2005. DOI: 10.1007/s00340-005-1906-2.
  • Y. Mao and Y. Zhang, “Molecular dynamics simulation on rapid boiling of water on a hot copper plate,” Appl. Therm. Eng., vol. 62, no. 2, pp. 607–612, 2014. DOI: 10.1016/j.applthermaleng.2013.10.032.
  • Y. Dou, L. V. Zhigilei, Z. Postawa, N. Winograd, and B. J. Garrison, “Thickness effects of water overlayer on its explosive evaporation at heated metal surfaces,” Nucl. Instrum. Meth. B, vol. 180, no. 1–4, pp. 105–111, 2001. DOI: 10.1016/S0168-583X(01)00403-7.
  • Y. Z. Tang, “Molecular dynamics simulation of nanofilm boiling on graphene-coated surface,” Adv. Theor. Simulat., pp. 1800037, 2018. DOI: 10.1002/adts.201900065.
  • H. Zhang, C. Li, M. Zhao, Y. Zhu, and W. Wang, “Influence of interface wettability on normal and explosive boiling of ultra-thin liquid films on a heated substrate in nanoscale: a molecular dynamics study,” Micro. Nano. Lett., vol. 12, no. 11, pp. 843–848, 2017. DOI: 10.1049/mnl.2017.0425.
  • H. R. Seyf and Y. Zhang, “Effect of nanotextured array of conical features on explosive boiling over a flat substrate: a nonequilibrium molecular dynamics study,” Int. J. Heat Mass Transf., vol. 66, pp. 613–624, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.025.
  • R. Liu and Z. Liu, “Study of boiling heat transfer on concave hemispherical nanostructure surface with MD simulation,” Int. J. Heat Mass Transf., vol. 143, pp. 118534, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118534.
  • S. Zhang et al., “Molecular dynamics simulation on explosive boiling of liquid argon film on copper nanochannels,” Appl. Therm. Eng., vol. 113, pp. 208–214, 2017. DOI: 10.1016/j.applthermaleng.2016.11.034.
  • P. Zhang, L. Zhou, L. Jin, H. Zhao, and X. Du, “Effect of nanostructures on rapid boiling of water films: a comparative study by molecular dynamics simulation,” Appl. Phys. A, vol. 125, no. 2, pp. 142, 2019. DOI: 10.1007/s00339-019-2453-8.
  • S. M. Shavik, M. N. Hasan, and A. K. M. M. Morshed, “Molecular dynamics study on explosive boiling of thin liquid argon film on nanostructured surface under different wetting conditions,” J. Electron. Packag., vol. 138, no. 1, pp. 010940, 2016. DOI: 10.1115/1.4032463.
  • R. A. Johnson, “Alloy models with the embedded-atom method,” Phys. Rev. B Condens. Matter, vol. 39, no. 17, pp. 12554–12559, 1989. DOI: 10.1103/physrevb.39.12554.
  • M. Zacharias, T. P. Straatsma, and J. A. McCammon, “Separation‐shifted scaling, a new scaling method for Lennard‐Jones interactions in thermodynamic integration,” J. Chem. Phys., vol. 100, no. 12, pp. 9025–9031, 1994. DOI: 10.1063/1.466707.
  • K. F. Rabbia, S. I. Tamimb, A. H. M. Faisalc, K. M. Mukutd, and M. N. Hasane, “A molecular dynamics study on thin film liquid boiling characteristics under rapid linear boundary heating: effect of liquid film thickness,” AIP Conf. Proc., vol. 1851, pp. 020102, 2017. DOI: 10.1063/1.4984731.
  • X. Yin, M. Bai, C. Hu, J. Lv, and Y. Li “Molecular Dynamics Simulation of Boiling Behavior of Nanofluid With Various Wettability Nanoparticle on Hydrophobic Surface,” ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. V001T04A008, 2019. DOI: 10.1115/MNHMT2019-4164.
  • H. Zhang, C. Li, M. Zhao, Y. Zhu, and W. Wang, “Influence of interface wettability on explosive boiling of ultra-thin liquid films on a heated substrate using molecular dynamics simulations,” IEEE NEMS, Los Angeles, USA, pp. 742–745, 2017. DOI: 10.1109/NEMS.2017.8017126.
  • A. Morshed, T. C. Paul, and J. A. Khan, “Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study,” Appl. Phys. A, vol. 105, no. 2, pp. 445–451, 2011. DOI: 10.1007/s00339-011-6577-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.