Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 4
220
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Conjugate heat transfer analysis of liquid metal turbulent flow through a horizontal channel by LES

&
Pages 140-157 | Received 29 Feb 2020, Accepted 10 Jun 2020, Published online: 26 Jun 2020

References

  • J. M. Crye et al., “Measurement of the heat transfer coefficient for mercury flowing in a narrow channel,” J. Heat Transfer ASME, vol. 124, no. 6, pp. 1034–1038, 2002. ” DOI: 10.1115/1.1518500.
  • L. Marocco, A. Loges, T. Wetzel, and R. Stieglitz, “Experimental investigation of the turbulent heavy liquid metal heat transfer in the thermal entry region of a vertical annulus with constant heat flux on the inner surface,” Int. J. Heat Mass Transfer, vol. 55, no. 23-24, pp. 6435–6445, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.06.037.
  • F. Roelofs et al., “Status and perspective of turbulence heat transfer modelling for the industrial application of liquid metal flows,” Nucl. Eng. Des., vol. 290, pp. 99–106, 2015. DOI: 10.1016/j.nucengdes.2014.11.006.
  • J. Pacio, L. Marocco, and T. Wetzel, “Review of data and correlations for turbulent forced convective heat transfer of liquid metals in pipes,” Heat Mass Transfer, vol. 51, no. 2, pp. 153–164, 2015. DOI: 10.1007/s00231-014-1392-3.
  • W. Jaeger, “Heat transfer to liquid metals with empirical models for turbulent forced convection in various geometries,” Nucl. Eng. Des., vol. 319, pp. 12–27, 2017. DOI: 10.1016/j.nucengdes.2017.04.028.
  • Y. Nagano and M. Shimada, “Development of a two equation heat transfer model based on direct simulations of turbulent flows with different Prandtl numbers,” Phys. Fluids, vol. 8, no. 12, pp. 3379–3402, 1996. DOI: 10.1063/1.869124.
  • X. Cheng and N-i Tak, “Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications,” Nucl. Eng. Des., vol. 236, no. 4, pp. 385–393, 2006. DOI: 10.1016/j.nucengdes.2005.09.006.
  • F. Chen, X. Huai, J. Cai, X. Li, and R. Meng, “Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic,” Nucl. Eng. Des., vol. 257, pp. 128–133, 2013. DOI: 10.1016/j.nucengdes.2013.01.005.
  • G. Grotzbach, “Challenges in low-Prandtl number heat transfer simulation and modelling,” Nucl. Eng. Des., vol. 264, pp. 41–55, 2013. DOI: 10.1016/j.nucengdes.2012.09.039.
  • S. Manservisi and F. Menghini, “A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals,” Int. J. Heat Mass Transfer, vol. 69, pp. 312–326, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.017.
  • A. Shams, F. Roelofs, E. Baglietto, S. Lardeau, and S. Kenjeres, “Assessment and calibration of an algebraic turbulent heat flux model for low-Prandtl fluids,” Int. J. Heat Mass Transfer, vol. 79, pp. 589–601, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.018.
  • S. Vodret, D. Vitale Di Maio, and G. Caruso, “Numerical simulation of turbulent forced convection in liquid metals,” J. Phys. Conf. Ser., vol. 547, pp. 012033, 2014. DOI: 10.1088/1742-6596/547/1/012033.
  • T. Schumm, M. Niemann, F. Magagnato, L. Marocco, B. Frohnapfel, and J. Frohlich, “Numerical prediction of heat transfer in liquid metal application,” Turbulence Heat Mass Transfer, vol. 8, pp. 1–12, 2015.
  • M. Niemann and J. Frohlich, “Buoyancy-affected backward-facing step flow with heat transfer at low Prandtl number,” Int. J. Heat Mass Transfer, vol. 101, pp. 1237–1250, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.137.
  • H. Kawamura, K. Ohsaka, H. Abe, and K. Yamamoto, “DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid,” Int. J. Heat Fluid Flow, vol. 19, no. 5, pp. 482–491, 1998. DOI: 10.1016/S0142-727X(98)10026-7.
  • L. Redjem-Saad, M. Ould-Rouiss, and G. Lauriat, “Direct numerical simulation of turbulent heat transfer in pipe flows: effect of Prandtl number,” Int. J. Heat Fluid Flow, vol. 28, no. 5, pp. 847–861, 2007. DOI: 10.1016/j.ijheatfluidflow.2007.02.003.
  • I. Tiselj and L. Cizelj, “DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01,” Nucl. Eng. Des., vol. 253, pp. 153–160, 2012. DOI: 10.1016/j.nucengdes.2012.08.008.
  • L. Bricteux, M. Duponcheel, G. Winckelmans, I. Tiselj, and Y. Bartosiewicz, “Direct and large eddy simulation of turbulent heat transfer at very low Prandtl number: application to lead-bismuth flows,” Nucl. Eng. Des., vol. 246, pp. 91–97, 2012. DOI: 10.1016/j.nucengdes.2011.07.010.
  • M. Duponcheel, L. Bricteux, M. Manconi, G. Winckelmans, and Y. Bartosiewicz, “Assessment of RANS and improved near-wall modeling for forced convection at low Prandtl numbers based on LES up to Reτ=2000,” Int. J. Heat Mass Transfer, vol. 75, pp. 470–482, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.080.
  • M. Niemann, R. A. Blazquez Navarro, V. Saini, and J. Fröhlich, “Buoyancy impact on secondary flow and heat transfer in a turbulent liquid metal flow through a vertical square duct,” Int. J. Heat Mass Transfer, vol. 125, pp. 722–748, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.074.
  • R. E. Milane, “Large eddy simulation (2D) using diffusion-velocity method and vortex-in-cell,” Int. J. Numer. Meth. Fluids, vol. 44, no. 8, pp. 837–860, 2004. DOI: 10.1002/fld.673.
  • M. Omidyeganeh and U. Piomelli, “Large-eddy simulation of two dimensional dunes in a steady, unidirectional flow,” J. Turb., vol. 42, pp. 1–31, 2011. DOI: 10.1080/14685248.2011.609820.
  • F. Nicoud and F. Ducros, “Subgrid-scale stress modelling based on the square of the velocity gradient tensor,” Flow Turb. Combust., vol. 62, no. 3, pp. 183–200, 1999. [Mismatch] DOI: 10.1023/A:1009995426001.
  • A. Horvat, I. Kljenak, and J. Marn, “Two-dimensional large eddy simulation of turbulent natural convection due to internal heat generation,” Int. J. Heat Mass Transfer, vol. 44, no. 21, pp. 3985–3995, 2001. DOI: 10.1016/S0017-9310(01)00066-7.
  • C. A. Sleicher, A. S. Awad, and R. H. Notter, “Temperature and Eddy diffusivity profiles in NaK numerical,” Int. J. Heat Mass Transfer, vol. 16, no. 8, pp. 1565–1575, 1973. DOI: 10.1016/0017-9310(73)90184-1.
  • R. Harish and K. Venkatasubbaiah, “Numerical investigation of instability patterns and nonlinear buoyant exchange flow between enclosures by variable density approach,” Comput. Fluids, vol. 96, pp. 276–287, 2014. DOI: 10.1016/j.compfluid.2014.03.026.
  • T. K. Sengupta, High Accuracy Computing Methods Fluid Flows and Wave Phenomena. Cambridge University Press, 2013.
  • P. G. Wilson and L. L. Pauley, “Two and three-dimensional large-eddy simulations of a transitional separation bubble,” Phys. Fluids, vol. 10, no. 11, pp. 2932–2940, 1998. DOI: 10.1063/1.869813.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.