Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 4
204
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of turbulent transport characteristic in hydrogen diffusion flames using direct numerical simulation

, , , &
Pages 125-139 | Received 11 Feb 2020, Accepted 16 Jun 2020, Published online: 02 Jul 2020

References

  • P. Huerre and P. A. Monkewitz, “Absolute and convective instabilities in free shear layers,” J. Fluid Mech., vol. 159, no. 1, pp. 151–168, Apr. 1985. DOI: 10.1017/S0022112085003147.
  • Y. Tang, J. K. Zhuo, W. Cui, S. Q. Li, and Q. Yao, “Enhancing ignition and inhibiting extinction of methane diffusion flame by in situ fuel processing using dielectric-barrier-discharge plasma,” Fuel Process. Technol., vol. 194, pp. 106128, Nov. 2019. DOI: 10.1016/j.fuproc.2019.106128.
  • C. R. L. Bauwens, J. M. Bergthorson, and S. B. Dorofeev, “Modeling the formation and growth of instabilities during spherical flame propagation,” Proc. Combust. Inst, vol. 37, no. 3, pp. 3669–3676, 2019. DOI: 10.1016/j.proci.2018.07.098.
  • Z. Q. Hu and X. Zhang, “Experimental study on flame stability of biogas/hydrogen combustion,” Int. J. Hydrogen Energy, vol. 44, no. 11, pp. 5607–5614, Feb. 2019. DOI: 10.1016/j.ijhydene.2018.08.011.
  • E. Karlis, Y. S. Liu, Y. Hardalupas, and A. M. K. P. Taylor, “Extinction strain rate suppression of the precessing vortex core in a swirl stabilised combustor and consequences for thermoacoustic oscillations,” Combust. Flame, vol. 211, pp. 229–252, Jan. 2020. DOI: 10.1016/j.combustflame.2019.09.031.
  • J. Y. Jiang, L. Jing, M. Zhu, and X. Jiang, “A comparative study of instabilities in forced reacting plumes of nonpremixed flames,” J. Energy Inst., vol. 89, no. 3, pp. 456–467, Aug. 2016. DOI: 10.1016/j.joei.2015.02.008.
  • D. Duarte, P. Ferrão, and M. V. Heitor, “Turbulence statistics and scalar transport in highly-sheared premixed flames,” Flow Turbul. Combust., vol. 60, no. 4, pp. 361–376, Dec. 1998. DOI: 10.1023/a:1009922511559.
  • A. N. Lipatnikov, “Transient behavior of turbulent scalar transport in premixed flames,” Flow Turbul. Combust., vol. 86, no. 3-4, pp. 609–637, Apr. 2011. DOI: 10.1007/s10494-010-9281-4.
  • C. Han, D. O. Lignell, E. R. Hawkes, J. H. Chen, and H. F. Wang, “Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames,” Int. J. Hydrogen Energy, vol. 42, no. 16, pp. 11879–11892, Apr. 2017. DOI: 10.1016/j.ijhydene.2017.01.094.
  • J. Schlup and G. Blanquart, “Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames,” Combust. Theor. Model., vol. 22, no. 2, pp. 264–290, Oct. 2018. DOI: 10.1080/13647830.2017.1398350.
  • W. Bilger and R. W. Dibble, “Differential molecular diffusion effects in turbulent mixing,” Combust. Sci. Tech., vol. 28, no. 3-4, pp. 161–172, Jun. 1982. DOI: 10.1080/00102208208952552.
  • K. S. Jung et al., “Differential diffusion effect on the stabilization characteristics of autoignited laminar lifted methane/hydrogen jet flames in heated coflow air,” Combust. Flame, vol. 198, pp. 305–319, Dec. 2018. DOI: 10.1016/j.combustflame.2018.09.026.
  • K. K. J. Ranga Dinesh, X. Jiang, J. A. V. Oijen, R. J. M. Bastiaans, and L. P. H. D. Goey, “Hydrogen-enriched nonpremixed jet flames: effects of preferential diffusion,” Int. J. Hydrogen Energy, vol. 38, no. 11, pp. 4848–4863, Apr. 2013. DOI: 10.1016/j.ijhydene.2013.01.171.
  • A. N. Lipatnikov and J. Chomiak, “Molecular transport effects on turbulent flame propagation and structure,” Prog. Energy Combust. Sci., vol. 31, no. 1, pp. 1–73, 2005. DOI: 10.1016/j.pecs.2004.07.001.
  • J. Fu, C. Tang, W. Jin, and Z. H. Huang, “Effect of preferential diffusion and flame stretch on flame structure and laminar burning velocity of syngas Bunsen flame using OH-PLIF,” Int. J. Hydrogen Energy, vol. 39, no. 23, pp. 12187–12193, Aug. 2014. DOI: 10.1016/j.ijhydene.2014.06.043.
  • H. Bongers and L. P. H. D. Goey, “The effect of simplified transport modeling on the burning velocity of laminar premixed flames,” Combust. Sci. Tech., vol. 175, no. 10, pp. 1915–1928, 2003. DOI: 10.1080/713713111.
  • E. Alexandre and V. Giovangigli, “Impact of detailed multicomponent transport on planar and counterflow hydrogen/air and methane/air flames,” Combust. Sci. Tech., vol. 149, no. 1-6, pp. 157–181, 1999. DOI: 10.1080/00102209908952104.
  • F. Morandini, X. Silvani, J. L. Dupuy, and A. Susset, “Fire spread across a sloping fuel bed: Flame dynamics and heat transfers,” Combust. Flame, vol. 190, pp. 158–170, Apr. 2018. DOI: 10.1016/j.combustflame.2017.11.025.
  • A. K. Hilo, A. R. A. Talib, A. A. Iborra, M. T. H. Sultan, and M. F. A. Hamid, “Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer,” Energy, vol. 190, no. 1, pp. 116294, Jan. 2020. DOI: 10.1016/j.energy.2019.116294.
  • R. Buttay, G. Lehnasch, and A. Mura, “Turbulent mixing and molecular transport in highly under-expanded hydrogen jets,” Int. J. Hydrogen Energy, vol. 43, no. 17, pp. 8488–8505, Apr. 2018. DOI: 10.1016/j.ijhydene.2018.03.054.
  • E. S. Richardson and J. H. Chen, “Application of PDF mixing models to premixed flames with differential diffusion,” Combust. Flame, vol. 159, no. 7, pp. 2398–2414, Jul. 2012. DOI: 10.1016/j.combustflame.2012.02.026.
  • J. Park et al., “Effects of Lewis number and preferential diffusion on flame characteristics in 80%H2/20%CO syngas counterflow diffusion flames diluted with He and Ar,” Int. J. Hydrogen Energy, vol. 34, no. 3, pp. 1578–1584, Feb. 2009. DOI: 10.1016/j.ijhydene.2008.11.087.
  • J. C. Sutherland, P. J. Smith, and J. H. Chen, “Quantification of differential diffusion in nonpremixed systems,” Combust. Theor. Model., vol. 9, no. 2, pp. 365–383, 2005. DOI: 10.1080/17455030500150009.
  • K. N. C. Bray, P. A. Libby, G. Masuya, and J. B. Moss, “Turbulence production in premixed turbulent flames,” Combust. Sci. Tech., vol. 25, no. 3-4, pp. 127–140, 1981. DOI: 10.1080/00102208108547512.
  • S. Pfadler et al., “Direct evaluation of the subgrid scale scalar flux in turbulent premixed flames with conditioned dual-plane stereo PIV,” Proc. Combust. Inst., vol. 32, no. 2, pp. 1723–1730, 2009. DOI: 10.1016/j.proci.2008.05.027.
  • N. Chakraborty and R. S. Cant, “Effects of Lewis number on scalar transport in turbulent premixed flames,” Phys. Fluids, vol. 21, no. 7, pp. 035–110, 2009. DOI: 10.1063/1.3097007.
  • P. A. Libby and K. N. C. Bray, “Countergradient diffusion in premixed turbulent flames,” AIAA J, vol. 19, no. 2, pp. 205–213, Feb. 1981. DOI: 10.2514/3.50941.
  • S. Serra, V. Robin, A. Mura, and M. Champion, “Density variations effects in turbulent diffusion flames: modeling of unresolved fluxes,” Combust. Sci. Tech., vol. 186, no. 10-11, pp. 1370–1391, Mar. 2014. DOI: 10.1080/00102202.2014.934605.
  • H. Pitsch, “Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames,” Combust. Flame, vol. 123, no. 3, pp. 358–374, Nov. 2000. DOI: 10.1016/S0010-2180(00)00135-8.
  • V. L. Zimont and F. Biagioli, “Gradient, counter-gradient transport and their transition in turbulent premixed flame,” Combust. Theor. Model., vol. 6, no. 1, pp. 79–101, 2002. DOI: 10.1088/1364-7830/6/1/305.
  • J. Chomiak and J. R. Nisbet, “Modeling variable density effects in turbulent flames- Some basic considerations,” Combust. Flame, vol. 102, no. 3, pp. 371–386, Aug. 1995. DOI: 10.1016/0010-2180(95)00001-M.
  • D. Veynante and T. Poinsot, “Effects of pressure gradients on turbulent premixed flame,” J. Fluid Mech., vol. 353, pp. 83–114, 1997. DOI: 10.1017/S0022112097007556.
  • K. H. Luo, “On local countergradient diffusion in turbulent diffusion flames,” Proc. Combust. Inst., vol. 28, no. 1, pp. 489–495, 2000. DOI: 10.1016/S0082-0784(00)80247-7.
  • J. Jiang, X. Jiang, and M. Zhu, “A computational study of preferential diffusion and scalar transport in nonpremixed hydrogen-air flames,” Int. J. Hydrogen Energy, vol. 40, no. 45, pp. 15709–15722, Dec. 2015. DOI: 10.1016/j.ijhydene.2015.08.112.
  • J. A. van Oijen and L. P. H. de Goey, “Modelling of premixed laminar flames using flamelet-generated manifolds,” Combust. Sci. Technol., vol. 161, no. 1, pp. 113–137, 2000. DOI: 10.1080/00102200008935814.
  • K. K. J. Ranga Dinesh, X. Jiang, and J. A. van Oijen, “Numerical simulation of hydrogen impinging jet flame using flamelet generated manifold reduction,” Int. J. Hydrogen Energy, vol. 37, no. 5, pp. 4502–4515, Mar. 2012. DOI: 10.1016/j.ijhydene.2011.11.144.
  • S. K. Lele, “Compact finite difference schemes with spectral-like resolution,” J. Comput. Phys., vol. 103, no. 1, pp. 16–42, Nov. 1992. DOI: 10.1016/0021-9991(92)90324-r.
  • J. H. Williamson, “Low-storage runge-kutta schemes,” J. Comput. Phys., vol. 35, no. 1, pp. 48–56, Mar. 1980. DOI: 10.1016/0021-9991(80)90033-9.
  • T. J. Poinsot and S. K. Lele, “Boundary conditions for direct simulations of compressible viscous flows,” J. Comput. Phys., vol. 101, no. 1, pp. 104–129, 1992. DOI: 10.1016/0021-9991(92)90046-2.
  • K. W. Thompson, “Time dependent boundary conditions for hyperbolic systems,” J. Comput. Phys., vol. 68, no. 1, pp. 1–24, Jan. 1987. DOI: 10.1016/0021-9991(87)90041-6.
  • D. Veynante and L. Vervisch, “Turbulent combustion modeling,” Prog. Energy Combust. Sci., vol. 28, no. 3, pp. 193–266, Mar. 2002. DOI: 10.1016/s0360-1285(01)00017-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.