Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 5
248
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

LBM modeling and analysis on microchannel slip flow and heat transfer under different heating conditions

, ORCID Icon, &
Pages 159-179 | Received 18 May 2020, Accepted 18 Jun 2020, Published online: 09 Jul 2020

References

  • C. Hong and Y. Asako, “Heat transfer characteristics of gaseous flow in a microchannel and microtube with constant wall temperature,” Numer. Heat Transf. Part A Appl., vol. 52, no. 3, pp. 219–238, 2007. DOI: 10.1080/10407780601149847.
  • L. Gong, J. Zhao, and S. B. Huang, “Numerical study on layout of micro-channel heat sink for thermal management of electronic devices,” Appl. Therm. Eng., vol. 88, pp. 480–490, 2015. DOI: 10.1016/j.applthermaleng.2014.09.048.
  • H. Bhowmik and K. W. Tou, “Experimental study of transient natural convection heat transfer from simulated electronic chips,” Exp. Therm. Fluid Sci., vol. 29, no. 4, pp. 485–492, 2005. DOI: 10.1016/j.expthermflusci.2004.06.003.
  • S. N. Li, et al., “Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink,” Appl. Therm. Eng., vol. 115, pp. 1213–1225, 2017. DOI: 10.1016/j.applthermaleng.2016.10.047.
  • M. B. Turgay and A. G. Yazicioglu, “Numerical simulation of fluid flow and heat transfer in a trapezoidal microchannel with COMSOL multiphysics: a case study,” Numer. Heat Transf. Part A Appl., vol. 73, no. 5, pp. 332–346, 2018. DOI: 10.1080/10407782.2017.1420302.
  • G. L. Wang, N. Qian, and G. F. Ding, “Heat transfer enhancement in microchannel heat sink with bidirectional rib,” Int. J. Heat Mass Transf., vol. 136, pp. 597–609, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.018.
  • C. S. Wang, T. C. Wei, P. Y. Shen, and T. M. Liou, “Lattice Boltzmann study of flow pulsation on heat transfer augmentation in a louvered microchannel heat sink,” Int. J. Heat Mass Transf., vol. 148, pp. 119139, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119139.
  • J. Bowers, et al., “Flow and heat transfer behavior of nanofluids in microchannels,” Progr. Nat. Sci. Mater. Int., vol. 28, no. 2, pp. 225–234, 2018. DOI: 10.1016/j.pnsc.2018.03.005.
  • H. L. Liu, D. H. Qi, X. D. Shao, and W. D. Wang, “An experimental and numerical investigation of heat transfer enhancement in annular microchannel heat sinks,” Int. J. Therm. Sci., vol. 142, pp. 106–120, 2019. DOI: 10.1016/j.ijthermalsci.2019.04.006.
  • H. P. Kavehpour, M. Faghri, and Y. Asako, “Effects of compressibility and rarefaction on gaseous flows in microchannels,” Numer. Heat Transf. Part A Appl., vol. 32, no. 7, pp. 677–696, 1997. DOI: 10.1080/10407789708913912.
  • X. D. Niu, C. Shu, and Y. T. Chew, “A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows,” Comput. Fluids, vol. 36, no. 2, pp. 273–281, 2007. DOI: 10.1016/j.compfluid.2005.11.007.
  • C. Shu, X. D. Niu, and Y. T. Chew, “A lattice Boltzmann kinetic model for microflow and heat transfer,” J. Stat. Phys., vol. 121, no. 1-2, pp. 239–255, 2005. DOI: 10.1007/s10955-005-8413-z.
  • H. Shokouhmand and S. Bigham, “Slip-flow and heat transfer of gaseous flows in the entrance of a wavy microchannel,” Int. Commun. Heat Mass Transf., vol. 37, no. 6, pp. 695–702, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.03.008.
  • S. Colin, “Gas microflows in the slip flow regime: a critical review on convective heat transfer,” ASME J. Heat Transf., vol. 134, no. 2, pp. 020908-1–020908-13, 2012. DOI: 10.1115/1.4005063.
  • L. M. Yang, Y. Yu, H. J. Pei, Y. Gao, and G. X. Hou, “Lattice Boltzmann simulations of liquid flows in microchannel with an improved slip boundary condition,” Chem. Eng. Sci., vol. 202, pp. 105–117, 2019. DOI: 10.1016/j.ces.2019.03.032.
  • B. Rahimi and H. Niazmand, “Effects of high-order slip/jump, thermal creep, and variable thermophysical properties on natural convection in microchannels with constant wall heat fluxes,” Heat Transf. Eng., vol. 35, no. 18, pp. 1528–1538, 2014. DOI: 10.1080/01457632.2014.897567.
  • B. Y. Cao, M. Chen, and Z. Y. Guo, “Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation,” Int. J. Eng. Sci., vol. 44, no. 13-14, pp. 927–937, 2006. DOI: 10.1016/j.ijengsci.2006.06.005.
  • Z. C. Hong, C. E. Zhen, and C. Y. Yang, “Fluid dynamics and heat transfer analysis of three dimensional microchannel flows with microstructures,” Numer. Heat Transf. Part A Appl., vol. 54, no. 3, pp. 293–314, 2008. DOI: 10.1080/10407780701790128.
  • S. Succi, “Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis,” Phys. Rev. Lett., vol. 89, no. 6, pp. 064502, 2002. 064502-1-064506-4. DOI: 10.1103/PhysRevLett.89.064502.
  • X. Y. He, S. Y. Chen, and G. D. Doolen, “A novel thermal model for the lattice Boltzmann method in incompressible limit,” J. Comput. Phys., vol. 146, no. 1, pp. 282–300, 1998. DOI: 10.1006/jcph.1998.6057.
  • A. W. F. Monfared, A. Sarrafi, S. Jafari, and M. Schaffie, “Thermal flux simulations by lattice Boltzmann method: investigation of high Richardson number cross flows over tandem square cylinders,” Int. J. Heat Mass Transf., vol. 86, pp. 563–580, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.03.011.
  • S. Ghadirzadeh and M. Kalteh, “Lattice Boltzmann simulation of temperature jump effect on the nanofluid heat transfer in an annulus microchannel,” Int. J. Mech. Sci., vol. 133, pp. 524–534, 2017. DOI: 10.1016/j.ijmecsci.2017.09.013.
  • H. C. Weng and C. K. Chen, “On the importance of thermal creep in natural convective gas microflow with wall heat fluxes,” J. Phys. D Appl. Phys., vol. 41, no. 11, pp. 115501–115510, 2008. DOI: 10.1088/0022-3727/41/11/115501.
  • A. D'Orazio, M. Corcione, and G. P. Celata, “Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition,” Int. J. Therm. Sci., vol. 43, no. 6, pp. 575–586, 2004. DOI: 10.1016/j.ijthermalsci.2003.11.002.
  • A. Karimipour, A. H. Nezhad, A. D’Orazio, and E. Shirani, “Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method,” Int. J. Therm. Sci., vol. 54, pp. 142–152, 2012. DOI: 10.1016/j.ijthermalsci.2011.11.015.
  • A. D'Orazio and A. Karimipour, “A useful case study to develop lattice Boltzmann method performance: gravity effects on slip velocity and temperature profiles of an air flow inside a microchannel under a constant heat flux boundary condition,” Int. J. Heat Mass Transf., vol. 136, pp. 1017–1029, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.029.
  • M. Kalteh and S. S. Abedinzadeh, “Numerical investigation of MHD nanofluid forced convection in a microchannel using lattice Boltzmann method,” Iran J. Sci. Technol. Trans. Mech. Eng., vol. 42, no. 1, pp. 23–34, 2018. DOI: 10.1007/s40997-017-0073-5.
  • A. Karimipour, A. D’Orazio, and M. S. Shadloo, “The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump,” Phys. E, vol. 86, pp. 146–153, 2017. DOI: 10.1016/j.physe.2016.10.015.
  • G. H. Tang, W. Q. Tao, and Y. L. He, “Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions,” Phys. Fluids, vol. 17, no. 5, pp. 058101, 2005. DOI: 10.1063/1.1897010.
  • P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev., vol. 94, no. 3, pp. 511–525, 1954. DOI: 10.1103/PhysRev.94.511.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.