Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 4
442
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Mesoscale simulations of saturated flow boiling heat transfer in a horizontal microchannel

, &
Pages 107-124 | Received 18 Mar 2020, Accepted 18 Jun 2020, Published online: 07 Jul 2020

References

  • C. Shen, C. Zhang, Y. Bao, X. Wang, Y. Liu, and L. Ren, “Experimental investigation on enhancement of nucleate pool boiling heat transfer using hybrid wetting pillar surface at low heat fluxes,” Int. J. Therm. Sci., vol. 130, pp. 47–58, Aug. 2018. DOI: 10.1016/j.ijthermalsci.2018.04.011.
  • H. Zhao and A. Williams, “Predicting the critical heat flux in pool boiling based on hydrodynamic instability induced irreversible hot spots,” Int. J. Multiphase Flow, vol. 104, pp. 174–187, Jul. 2018. DOI: 10.1016/j.ijmultiphaseflow.2018.02.021.
  • Q. Li, Q. Kang, M. M. Francois, Y. He, and K. Luo, “Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability,” Int. J. Heat Mass Transf., vol. 85, pp. 787–796, Jun. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.136.
  • W. Ji, M. Numata, Y. He, and W. Tao, “Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes,” Int. J. Heat Mass Transf., vol. 86, pp. 744–754, Jul. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.020.
  • A. R. Betz, J. Xu, H. Qiu, and D. Attinger, “Do surfaces with mixed hydrophilic and hybdrophobic areas enhance pool boiling,” Appl. Phys. Lett., vol. 97, no. 14, pp. 141909, Oct. 2010. DOI: 10.1063/1.3485057.
  • Y. Nam, J. Wu, G. Warrier, and Y. S. Ju, “Experimental and numerical study of single bubble dynamics on a hydrophobic surface,” J. Heat Transf., vol. 131, no. 12, pp. 121004, Dec. 2009.
  • M. Yazdani, T. Radcliff, M. Soteriou, and A. A. Alahyari, “A high-fidelity approach towards simulation of pool boiling,” Phys. Fluids, vol. 28, no. 1, pp. 012111, Jan. 2016. DOI: 10.1063/1.4940042.
  • E. A. Chinnov, F. V. Ron’shin, and O. A. Kabov, “Two-phase flow patterns in short horizontal rectangular microchannels,” Int. J. Multiphase Flow, vol. 80, pp. 57–68, Apr. 2016. DOI: 10.1016/j.ijmultiphaseflow.2015.11.006.
  • B. R. Fu, P. H. Lin, M. S. Tsou, and C. Pan, “Flow pattern maps and transition criteria for flow boiling of binary mixtures in a diverging microchannel,” Int. J. Heat Mass Transf., vol. 55, pp. 1754–1763, Feb. 2012.
  • H. Grzybowski and R. Mosdorf, “Dynamics of pressure drop oscillations during flow boiling inside minichannel,” Int. Commun. Heat Mass Transf., vol. 95, pp. 25–32, Jul. 2018. DOI: 10.1016/j.icheatmasstransfer.2018.03.025.
  • B. J. Yun, A. Splawski, S. Lo, and C. H. Song, “Prediction of a subcooled boiling flow with advanced two-phase flow models,” Nucl. Eng. Des., vol. 253, pp. 351–359, Dec. 2012. DOI: 10.1016/j.nucengdes.2011.08.067.
  • G. H. Yeoh and J. Y. Tu, “A unified model considering force balances for departing vapour bubbles and population balance in subcooled boiling flow,” Nucl. Eng. Des., vol. 235, no. 10–12, pp. 1251–1265, May. 2005. DOI: 10.1016/j.nucengdes.2005.02.015.
  • G. H. Yeoh, S. C. P. Cheung, J. Y. Tu, and M. K. M. Ho, “Fundamental consideration of wall heat partition of vertical subcooled boiling flows,” Int. J. Heat Mass Transf., vol. 51, no. 15–16, pp. 3840–3853, Jul. 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.11.047.
  • R. Sugrue and J. Buongiorno, “Fundamental consideration of wall heat partition of vertical subcooled boiling flows,” Nucl. Eng. Des., vol. 305, pp. 717–722, Aug. 2016. DOI: 10.1016/j.nucengdes.2016.04.017.
  • G. E. Thorncroft and J. F. Klausner, “Bubble forces and detachment models,” MultScienTechn, vol. 13, no. 3–4, pp. 42, 2001. DOI: 10.1615/MultScienTechn.v13.i3-4.20.
  • G. Giustini, K. H. Ardron, and S. P. Walker, “Modelling of bubble departure in flow boiling using equilibrium thermodynamics,” Int. J. Heat Mass Transf., vol. 122, pp. 1085–1092, Jul. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.057.
  • A. Mukherjee, S. G. Kandlikar, and Z. J. Edel, “Numerical study of bubble growth and wall heat transfer during flow boiling in a microchannel,” Int. J. Heat Mass Transf., vol. 54, no. 15–16, pp. 3702–3718, Jul. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.01.030.
  • R. Zhuan and W. Wang, “Simulation of subcooled flow boiling in a micro-channel,” Int. J. Refrigeration, vol. 34, no. 3, pp. 781–795, May 2011. DOI: 10.1016/j.ijrefrig.2010.12.004.
  • C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • H. Liang, Y. Li, J. Chen, and J. Xu, “Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio,” Int. J. Heat Mass Transf., vol. 130, pp. 1189–1205, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.050.
  • L. Wang, B. Shi, Z. Chai, and X. Yang, “Regularized lattice Boltzmann model for double-diffusive convection in vertical enclosures with heating and salting from below,” Appl. Therm. Eng., vol. 103, pp. 365–376, Jun. 2016. DOI: 10.1016/j.applthermaleng.2016.04.080.
  • L. Wang, B. Shi, and Z. Chai, “Effects of temperature-dependent properties on natural convection of nanofluids in a partially heated cubic enclosure,” Appl. Therm. Eng., vol. 128, pp. 204–213, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.09.006.
  • L. Wang, X. Yang, C. Huang, Z. Chai and B. Shi, “Hybrid lattice Boltzmann-TVD simulation of natural convection of nanofluids in a partially heated square cavity using Buongiornos model,” Appl. Therm. Eng., vol. 146, pp. 318–327, Jan. 2019. DOI: 10.1016/j.applthermaleng.2018.09.109.
  • S. Gong and P. Cheng, “Numerical investigation of saturated flow boiling in microchannels by the Lattice Boltzmann method,” Numer. Heat Transf. A Appl., vol. 65, no. 7, pp. 644–661, Jul. 2014. DOI: 10.1080/10407782.2013.836025.
  • T. Sun, N. Gui, X. Yang, J. Tu, and S. Jiang, “Numerical study of patterns and influencing factors on flow boiling in vertical tubes by thermal LBM simulation,” Int. Commun. Heat Mass Transf., vol. 86, pp. 32–41, Aug. 2017. DOI: 10.1016/j.icheatmasstransfer.2017.05.014.
  • T. Sun, N. Gui, X. Yang, J. Tu, and S. Jiang, “Effect of contact angle on flow boiling in vertical ducts: a pseudo-potential MRT-thermal LB coupled study,” Int. J. Heat Mass Transf., vol. 121, pp. 1229–1233, Jun. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.088.
  • S. Gong and P. Cheng, “Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling,” Int. J. Heat Mass Transf., vol. 64, pp. 122–132, Sep. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.058.
  • S. Gong and P. Cheng, “A lattice Boltzmann method for simulation of liquid–vapor phase-change heat transfer,” Int. J. Heat Mass Transf., vol. 55, no. 17–18, pp. 4923–4927, Aug. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.04.037.
  • G. Hazi and A. Markus, “On the bubble departure diameter and release frequency based on numerical simulation results,” Int. J. Heat Mass Transf., vol. 52, no. 5–6, pp. 1472–1480, Feb. 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.09.003.
  • L. Zhang, T. Wang, Y. Jiang, S. H. Kim, and C. Guo, “A study of boiling on surfaces with temperature-dependent wettability by lattice Boltzmann method,” Int. J. Heat Mass Transf., vol. 122, pp. 775–784, Jul. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.026.
  • T. Zhang, B. Shi, Z. Guo, Z. Chai, and J. Lu, “General bounce-back scheme for concentration boundary condition in the Lattice-Boltzmann method,” Phys. Rev. E, vol. 85, no. 1, pp. 016701, Jan. 2012. DOI: 10.1103/PhysRevE.85.016701.
  • Q. Lou, Z. Guo, and B. Shi, “Evaluation of outflow boundary conditions for two-phase Lattice Boltzmann equation,” Phys. Rev. E, vol. 87, no. 6, pp. 063301, Jun. 2013. DOI: 10.1103/PhysRevE.87.063301.
  • W. Fritz, “Berechnung des maximal volumes von Dampfblasen,” Phys. Z., vol. 36, pp. 379–384, 1935.
  • J. Wang, Y. Cheng, X. Li, and F. Li, “Experimental and LBM simulation study on the effect of bubbles merging on flow boiling,” Int. J. Heat Mass Transf., vol. 132, pp. 1053–1061, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.140.
  • S. Gong and P. Cheng, “Direct numerical simulations of pool boiling curves including heater’s thermal responses and the effect of vapor phase’s thermal conductivity,” Int. Commun. Heat Mass Transf., vol. 87, pp. 61–71, Oct. 2017. DOI: 10.1016/j.icheatmasstransfer.2017.06.023.
  • S. Gong and P. Cheng, “Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer,” Int. J. Heat Mass Transf., vol. 85, pp. 635–646, Jun. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.008.
  • M. Gao, P. Kong, and L. Zhang, “Evaporation dynamics of different sizes sessile droplets on hydrophilic and hydrophobic heating surface under constant wall heat fluxes conditions,” Int. Commun. Heat Mass Transf., vol. 93, pp. 93–99, Apr. 2018. DOI: 10.1016/j.icheatmasstransfer.2018.03.007.
  • M. Gao, P. Kong, L. Zhang, and J. Liu, “An experimental investigation of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat flux,” Int. Commun. Heat Mass Transf., vol. 88, pp. 262–268, Nov. 2017. DOI: 10.1016/j.icheatmasstransfer.2017.09.010.
  • J. Dirker, J. P. Meyer, and W. J. Reid, “Experimental investigation of circumferentially non-uniform heat flux on the heat transfer coefficient in a smooth horizontal tube with buoyancy driven secondary flow,” Exp. Therm. Fluid Sci., vol. 98, pp. 480–496, Nov. 2018. DOI: 10.1016/j.expthermflusci.2018.06.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.