Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 6
567
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Thermal and flow characterization in nanochannels with tunable surface wettability: A comprehensive molecular dynamics study

, , , , , & show all
Pages 231-251 | Received 27 Sep 2019, Accepted 24 Jun 2020, Published online: 10 Jul 2020

References

  • R. R. Schaller, “Moore's law: Past, present and future,” IEEE Spectr., vol. 34, no. 6, pp. 52–59, 1997. DOI: 10.1109/6.591665.
  • A. L. Moore and L. Shi, “Emerging challenges and materials for thermal management of electronics,” Mater. Today, vol. 17, no. 4, pp. 163–174, 2014. DOI: 10.1016/j.mattod.2014.04.003.
  • A. Kumar, S. Nath and D. Bhanja, “Effect of nanofluid on thermo hydraulic performance of double layer tapered microchannel heat sink used for electronic chip cooling,” Numer. Heat Transfer, Part A, vol. 73, no. 7, pp. 429–445, 2018. DOI: 10.1080/10407782.2018.1448611.
  • Q. Yao, T. M. Shih, R. R. G. Chang, Z. Chen, Y. L. Gao and Y. J. Lu, “Optimization of the cooling characteristics in high-voltage LEDs,” Numer. Heat Transfer, Part A, vol. 69, no. 11, pp. 1242–1252, 2016. DOI: 10.1080/10407782.2015.1127727.
  • M. Jaworski, “Thermal performance of heat spreader for electronics cooling with incorporated phase change material,” Appl. Therm. Eng., vol. 35, pp. 212–219, 2012. DOI: 10.1016/j.applthermaleng.2011.10.036.
  • H. Yin, X. Gao, J. Ding and Z. Zhang, “Experimental research on heat transfer mechanism of heat sink with composite phase change materials,” Energy Convers. Manage., vol. 49, no. 6, pp. 1740–1746, 2008. DOI: 10.1016/j.enconman.2007.10.022.
  • C. Lian, Y. Wang, Q. Li, H. Li and X. He, “Numerical investigation on the performance of microencapsulated phase change material suspension applied to liquid cold plates,” Numer. Heat Transfer, Part A, vol. 75, no. 5, pp. 342–358, 2019. DOI: 10.1080/10407782.2019.1595817.
  • Q. Cao and Z. Cui, “Molecular dynamics simulations of the effect of surface wettability on nanoscale liquid film phase-change,” Numer. Heat Transfer, Part A, vol. 75, no. 8, pp. 533–547, 2019. DOI: 10.1080/10407782.2019.1608768.
  • X. Luo, S. Liu, X. Jiang and T. Cheng, “Experimental and numerical study on a micro jet cooling solution for high power LEDs,” Sci. China Ser. E, vol. 50, no. 4, pp. 478–489, 2007. DOI: 10.1007/s11431-007-0028-y.
  • S. G. Kandlikar and A. V. Bapat, “Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal,” Heat Transfer Eng., vol. 28, no. 11, pp. 911–923, 2007. DOI: 10.1080/01457630701421703.
  • I. Zahmatkesh and S. A. Naghedifar, “Oscillatory mixed convection in the jet impingement cooling of a horizontal surface immersed in a nanofluid-saturated porous medium,” Numer. Heat Transfer, Part A, vol. 72, no. 5, pp. 401–416, 2017. DOI: 10.1080/10407782.2017.1376961.
  • E. Pop, “Energy dissipation and transport in nanoscale devices,” Nano Res, vol. 3, no. 3, pp. 147–169, 2010. DOI: 10.1007/s12274-010-1019-z.
  • W. Qu, G. M. Mala and D. Li, “Pressure-driven water flows in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer, vol. 43, no. 3, pp. 353–364, 2000.
  • F. Ahmad, T. A. Cheema, M. M. Ur Rehman, A. Abbas and C. W. Park, “Thermal enhancement of microchannel heat sink using rib surface refinements,” Numer. Heat Transfer, Part A, vol. 76, no. 11, pp. 851–870, 2019. DOI: 10.1080/10407782.2019.1673104.
  • T. W. Kim and T. S. Park, “Size effect on compressible flow and heat transfer in microtube with rarefaction and viscous dissipation,” Numer. Heat Transfer, Part A, vol. 76, no. 11, pp. 871–888, 2019. DOI: 10.1080/10407782.2019.1673106.
  • B. Y. Cao, M. Chen and Z. Y. Guo, “Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation,” Phys. Rev. E, vol. 74, no. 6, pp. 066311, 2006. DOI: 10.1103/PhysRevE.74.066311.
  • L. Bocquet and J. L. Barrat, “Flow boundary conditions from nano-to micro-scales,” Soft Matter, vol. 3, no. 6, pp. 685–693, 2007. DOI: 10.1039/b616490k.
  • C. Zhang and Y. Chen, “Slip behavior of liquid flow in rough nanochannels,” Chem. Eng. Process, vol. 85, pp. 203–208, 2014. DOI: 10.1016/j.cep.2014.09.003.
  • T. G. Knudstrup, I. A. Bitsanis and G. B. Westermann-Clark, “Pressure-driven flow experiments in molecularly narrow, straight pores of molecular dimension in mica,” Langmuir, vol. 11, no. 3, pp. 893–897, 1995. DOI: 10.1021/la00003a036.
  • H. Y. Wu and P. Cheng, “An experimental study of convective heat transfer in silicon microchannels with different surface conditions,” Int. J. Heat Mass Transfer, vol. 46, no. 14, pp. 2547–2556, 2003. DOI: 10.1016/S0017-9310(03)00035-8.
  • P. Wu and W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators,” Cryogenics, vol. 23, no. 5, pp. 273–277, 1983. DOI: 10.1016/0011-2275(83)90150-9.
  • W. Qu, G. M. Mala and D. Li, “Heat transfer for water flow in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer, vol. 43, no. 21, pp. 3925–3936, 2000. DOI: 10.1016/S0017-9310(00)00045-4.
  • S. Ge, Y. Gu and M. Chen, “A molecular dynamics simulation on the convective heat transfer in nanochannels,” Mol. Phys., vol. 113, no. 7, pp. 703–710, 2015. DOI: 10.1080/00268976.2014.970593.
  • Y. W. Gu, S. Ge and M. Chen, “A molecular dynamics simulation of nanoscale convective heat transfer with the effect of axial heat conduction,” Mol. Phys., vol. 114, no. 12, pp. 1922–1930, 2016. DOI: 10.1080/00268976.2016.1168884.
  • D. C. Marable, S. Shin and A. Y. Nobakht, “Investigation into the microscopic mechanisms influencing convective heat transfer of water flow in graphene nanochannels,” Int. J. Heat Mass Transfer, vol. 109, pp. 28–39, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.100.
  • P. Chakraborty, T. Ma, L. Cao and Y. Wang, “Significantly enhanced convective heat transfer through surface modification in nanochannels,” Int. J. Heat Mass Transfer, vol. 136, pp. 702–708, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.053.
  • H. Babaei, P. Keblinski and J. Khodadadi, “A proof for insignificant effect of Brownian motion-induced micro-convection on thermal conductivity of nanofluids by utilizing molecular dynamics simulations,” J. Appl. Phys., vol. 113, no. 8, pp. 084302, 2013. DOI: 10.1063/1.4791705.
  • W. Cui, Z. Shen, J. Yang and S. Wu, “Effect of chaotic movements of nanoparticles for nanofluid heat transfer augmentation by molecular dynamics simulation,” Appl. Therm. Eng., vol. 76, pp. 261–271, 2015. DOI: 10.1016/j.applthermaleng.2014.11.030.
  • A. Rajabpour, F. Y. Akizi, M. M. Heyhat and K. Gordiz, “Molecular dynamics simulation of the specific heat capacity of water-Cu nanofluids,” Int. Nano Lett., vol. 3, no. 1, pp. 58, 2013.
  • C. Hu, M. Bai, J. Lv and X. Li, “An investigation on the flow and heat transfer characteristics of nanofluids by nonequilibrium molecular dynamics simulations,” Numer. Heat Transfer, Part B, vol. 70, no. 2, pp. 152–163, 2016. DOI: 10.1080/10407790.2016.1177398.
  • X. Yin, C. Hu, M. Bai and J. Lv, “Molecular dynamics simulation on the effect of nanoparticles on the heat transfer characteristics of pool boiling,” Numer. Heat Transfer, Part B, vol. 73, no. 2, pp. 94–105, 2018. DOI: 10.1080/10407790.2017.1420323.
  • L. Li, P. Ji and Y. Zhang, “Molecular dynamics simulation of condensation on nanostructured surface in a confined space,” Appl. Phys. A, vol. 122, no. 5, pp. 496, 2016. DOI: 10.1007/s00339-016-0032-9.
  • Y. N. Osetsky, A. Serra, B. N. Singh and S. I. Golubov, “Structure and properties of clusters of self-interstitial atoms in fcc copper and bcc iron,” Philos. Mag. A, vol. 80, no. 9, pp. 2131–2157, 2000. DOI: 10.1080/01418610050132747.
  • N. V. Priezjev, “Effect of surface roughness on rate-dependent slip in simple fluids,” J. Chem. Phys., vol. 127, no. 14, pp. 144708, 2007. DOI: 10.1063/1.2796172.
  • S. Sarkar, C. Jana and B. Bagchi, “Breakdown of universal Lindemann criterion in the melting of Lennard-Jones polydisperse solids,” J. Chem. Sci., vol. 129, no. 7, pp. 833–840, 2017. DOI: 10.1007/s12039-017-1245-y.
  • F. Müller-Plathe, “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity,” J. Chem. Phys., vol. 106, no. 14, pp. 6082–6085, 1997. DOI: 10.1063/1.473271.
  • R. Wang, S. Qian and Z. Zhang, “Investigation of the aggregation morphology of nanoparticle on the thermal conductivity of nanofluid by molecular dynamics simulations,” Int. J. Heat Mass Transfer, vol. 127, pp. 1138–1146, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.08.117.
  • C. L. Kong, “Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12-6) potential and the Morse potential,” J. Chem. Phys., vol. 59, no. 5, pp. 2464–2467, 1973. DOI: 10.1063/1.1680358.
  • L. Verlet, “Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Phys. Rev., vol. 159, no. 1, pp. 98–103, 1967. DOI: 10.1103/PhysRev.159.98.
  • T. Nakamura, S. Kawamoto and W. Shinoda, “Precise calculation of the local pressure tensor in Cartesian and spherical coordinates in LAMMPS,” Comput. Phys. Commun., vol. 190, pp. 120–128, 2015. DOI: 10.1016/j.cpc.2014.11.017.
  • R. C. Raghu and J. Schofield, “Simulation of pressure-driven flows in nanochannels using multiparticle collision dynamics,” J. Phys. Chem. C, vol. 114, no. 48, pp. 20659–20671, 2010. DOI: 10.1021/jp1055914.
  • B. Y. Cao, “Non-Maxwell slippage induced by surface roughness for microscale gas flow: A molecular dynamics simulation,” Mol. Phys., vol. 105, no. 10, pp. 1403–1410, 2007. DOI: 10.1080/00268970701361322.
  • E. D. Miguel and G. Jackson, “The nature of the calculation of the pressure in molecular simulations of continuous models from volume perturbations,” J. Chem. Phys., vol. 125, no. 16, pp. 164109, 2006. DOI: 10.1063/1.2363381.
  • D. Han, et al., “Phonon thermal conduction in a graphene-C3N heterobilayer using molecular dynamics simulations,” Nanotech, vol. 30, no. 7, pp. 075403, 2019. DOI: 10.1088/1361-6528/aaf481.
  • X. Wang, J. Zhang, Y. Chen and P. K. Chan, “Investigation of interfacial thermal transport across graphene and an organic semiconductor using molecular dynamics simulations,” Phys. Chem. Chem. Phys., vol. 19, no. 24, pp. 15933–15941, 2017. DOI: 10.1039/C7CP01958K.
  • X. Wang, M. Wang, Y. Hong, Z. Wang and J. Zhang, “Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice,” Phys. Chem. Chem. Phys., vol. 19, no. 35, pp. 24240–24248, 2017. DOI: 10.1039/C7CP04219A.
  • X. Wang, J. Zhang, Y. Chen and P. K. Chan, “Molecular dynamics study of thermal transport in a dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) organic semiconductor,” Nanoscale, vol. 9, no. 6, pp. 2262–2271, 2017. DOI: 10.1039/c6nr08682a.
  • B. Li, J. Lan and L. Wang, “Interface thermal resistance between dissimilar anharmonic lattices,” Phys. Rev. Lett., vol. 95, no. 10, pp. 104302, 2005. DOI: 10.1103/PhysRevLett.95.104302.
  • T. S. English, J. C. Duda, J. L. Smoyer, D. A. Jordan, P. M. Norris and L. V. Zhigilei, “Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces,” Phys. Rev. B, vol. 85, no. 3, pp. 035438, 2012. DOI: 10.1103/PhysRevB.85.035438.
  • J. Sun and Z. X. Li, “Three-dimensional molecular dynamic study on accommodation coefficients in rough nanochannels,” Heat Transfer Eng., vol. 32, no. 7-8, pp. 658–666, 2011. DOI: 10.1080/01457632.2010.509759.
  • J. Sun and Z. X. Li, “Molecular dynamics simulations of energy accommodation coefficients for gas flows in nano-channels,” Mol. Simul., vol. 35, no. 3, pp. 228–233, 2009. DOI: 10.1080/08927020802395435.
  • J. Sun and Z. X. Li, “Effect of gas adsorption on momentum accommodation coefficients in microgas flows using molecular dynamic simulations,” Mol. Phys., vol. 106, no. 19, pp. 2325–2332, 2008. DOI: 10.1080/00268970802452020.
  • H. Yamaguchi, Y. Matsuda and T. Niimi, “Molecular-dynamics study on characteristics of energy and tangential momentum accommodation coefficients,” Phys. Rev. E, vol. 96, no. 1, pp. 013116, 2017. DOI: 10.1103/PhysRevE.96.013116.
  • L. Li, J. Mo and Z. Li, “Flow and slip transition in nanochannels,” Phys. Rev. E, vol. 90, no. 3, pp. 033003, 2014. DOI: 10.1103/PhysRevE.90.033003.
  • T. H. Chilton and A. P. Colburn, “Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction,” Ind. Eng. Chem., vol. 26, no. 11, pp. 1183–1187, 1934. DOI: 10.1021/ie50299a012.
  • A. P. Colburn, “A method of correlating forced convection heat-transfer data and a comparison with fluid friction,” Int. J. Heat Mass Transfer, vol. 7, no. 12, pp. 1359–1384, 1964. DOI: 10.1016/0017-9310(64)90125-5.
  • E. M. Sparrow and W. Q. Tao, “Symmetric vs asymmetric periodic disturbances at the walls of a heated flow passage,” Int. J. Heat Mass Transfer, vol. 27, no. 11, pp. 2133–2144, 1984. DOI: 10.1016/0017-9310(84)90200-X.
  • H.-Z. Huang and W. Q. Tao, “An experimental study on heat/mass transfer and pressure drop characteristics for arrays of nonuniform plate length positioned obliquely to the flow direction,” J. Heat Transfer, vol. 115, no. 3, pp. 568–575, 1993. DOI: 10.1115/1.2910726.
  • S. S. Lue, H. Z. Huang and W. Q. Tao, “Experimental study on heat transfer and pressure drop characteristics in the developing region for arrays of obliquely positioned plates of nonuniform length,” Exp. Therm. Fluid Sci., vol. 7, no. 1, pp. 30–38, 1993. DOI: 10.1016/0894-1777(93)90078-W.
  • Y. P. Cheng Z. G. Qu W. Q. Tao and Y. L. He, “Numerical design of efficient slotted fin surface based on the field synergy principle,” Numer. Heat Transfer, Part A, vol. 45, no. 6, pp. 517–538, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.