Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 7
291
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Study on trench film cooling on turbine vane by large-eddy simulation

, , &
Pages 338-358 | Received 28 Apr 2020, Accepted 30 Jun 2020, Published online: 22 Jul 2020

References

  • R. S. Bunker, “A review of shaped hole turbine film-cooling technology,” ASME J. Heat Trans., vol. 127, no. 4, pp. 441–453, 2005. DOI: 10.1115/1.1860562.
  • R. Zhu, T. W. Simon, and G. N. Xie, “Influence on film cooling effectiveness of novel holes based on cylindrical configurations,” Numer. Heat Tr. A Appl., vol. 75, no. 7, pp. 469–488, 2019. DOI: 10.1080/10407782.2019.1606629.
  • R. S. Bunker, “Film cooling effectiveness due to discrete holes within a transverse surface slot,” ASME Turbo Expo 2002: Power for Land, Sea, and Air. Amsterdam, The Netherlands. Paper No. GT2002-30178, 2002. DOI: 10.1115/GT2002-30178.
  • Y. P. Lu, A. Dhungel, S. V. Ekkad, and R. S. Bunker, “Effect of trench width and depth on film cooling from cylindrical holes embedded in trenches,” ASME J. Turbomach., vol. 131, no. 1, pp. 011003-1–13, 2009. DOI: 10.1115/1.2950057.
  • K. L. Harrison and D. G. Bogard, “CFD predictions of film cooling adiabatic effectiveness for cylindrical holes embedded in narrow and wide transverse trenches,” ASME Turbo Expo 2007: Power for Land, Sea, and Air. Montreal, Canada. Paper No. GT2007-28005, 2007. DOI: 10.1115/GT2007-28005.
  • J. S. Wei, H. R. Zhu, C. L. Liu, H. Song, C. Liu, and T. Meng, “Experimental study on the film cooling characteristics of the cylindrical holes embedded in sine-wave shaped trench,” ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Seoul, South Korea. Paper No. GT2016-56856, 2016. DOI: 10.1115/GT2016-56856.
  • S. K. Waye and D. G. Bogard, “High resolution film cooling effectiveness measurements of axial holes embedded in a transverse trench with various trench configurations,” ASME Turbo Expo 2006: Power for Land, Sea, and Air. Barcelona, Spain. Paper No. GT2006-90226, 2006. DOI: 10.1115/GT2006-90226.
  • J. Li, J. Ren, and H. D. Jiang, “Film cooling performance of the embedded holes in trenches with compound angles,” ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK. Paper No. GT2010-22337, 2010. DOI: 10.1115/GT2010-22337.
  • K. D. Lee and K. Y. Kim, “Film cooling performance of cylindrical holes embedded in a transverse trench,” Numer. Heat Tr. A Appl., vol. 65, no. 2, pp. 127–143, 2014. DOI: 10.1080/10407782.2013.826106.
  • J. E. Albert and D. G. Bogard, “Measurements of adiabatic film and overall cooling effectiveness on a turbine vane pressure side with a trench,” ASME J. Turbomach., vol. 135, no. 5, pp. 051007-1–12, 2013. DOI: 10.1115/1.4007820.
  • N. Sundaram and K. A. Thole, “Film-cooling flowfields with trenched holes on an endwall,” ASME J. Turbomach., vol. 131, no. 4, pp. 041007-1–10, 2009. DOI: 10.1115/1.3068316.
  • K. L. Harrison, J. R. Dorrington, J. E. Dees, D. G. Bogard, and R. S. Bunker, “Turbine airfoil net heat flux reduction with cylindrical holes embedded in a transverse trench,” ASME J. Turbomach., vol. 131, no. 1, pp. 011012-1–8, 2009. DOI: 10.1115/1.2812967.
  • S. B. Islami, S. P. A. Tabrizi, B. A. Jubran, and E. Esmaeilzadeh, “Influence of trenched shaped holes on turbine blade leading edge film cooling,” Heat Transfer Eng., vol. 31, no. 10, pp. 889–906, 2010. DOI: 10.1080/01457630903550317.
  • S. B. Islami and B. A. Jubran, “The effect of turbulence intensity on film cooling of gas turbine blade from trenched shaped holes,” Heat Mass Transf., vol. 48, no. 5, pp. 831–840, 2012. DOI: 10.1007/s00231-011-0938-x.
  • K. N. Huang, J. Z. Zhang, C. H. Wang, and Y. Shan, “Numerical evaluation on single-row trenched-hole film cooling performances on turbine guide vane under engine-representative conditions,” Numer. Heat Tr. A Appl., vol. 76, no. 4, pp. 198–219, 2019. DOI: 10.1080/10407782.2019.1627830.
  • W. He, Q. H. Deng, W. L. Zhou, T. Y. Gao, and Z. P. Feng, “Film cooling and aerodynamic performances of a turbine nozzle guide vane with trenched cooling holes,” Appl. Therm. Eng., vol. 150, pp. 150–163, 2019. DOI: 10.1016/j.applthermaleng.2019.01.002.
  • G. Barigozzi, G. Franchini, A. Perdichizzi, and S. Ravelli, “Effects of trenched holes on film cooling of a contoured endwall nozzle vane,” ASME J. Turbomach., vol. 134, no. 4, pp. 041009-1–10, 2012. DOI: 10.1115/1.4003658.
  • S. H. Smith and M. G. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech., vol. 357, pp. 83–122, 1998. DOI: 10.1017/S0022112097007891.
  • C. H. Wang, F. S. Fan, J. Z. Zhang, Y. Huang, and H. K. Feng, “Large eddy simulation of film cooling flow from converging slot-holes,” Int. J. Therm. Sci., vol. 126, pp. 238–251, 2018. DOI: 10.1016/j.ijthermalsci.2018.01.007.
  • D. H. Leedom and S. Acharya, “Large eddy simulations of film cooling flow fields from cylindrical and shaped holes,” ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin, Germany. Paper No. GT2008-51009, 2008. DOI: 10.1115/GT2008-51009.
  • M. Tyagi and S. Acharya, “Large eddy simulation of film cooling flow from an inclined cylindrical jet,” ASME J. Turbomach., vol. 125, no. 4, pp. 734–742, 2003. DOI: 10.1115/1.1625397.
  • E. Sakai, T. Takahashi, and H. Watanabe, “Large-eddy simulation of an inclined round jet issuing into a crossflow,” Int. J. Heat Mass Transf., vol. 69, pp. 300–311, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.027.
  • P. Renze and M. Meinke, “Large-eddy simulation of film cooling flow ejected in a shallow cavity,” ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin, Germany. Paper No. GT2008-50120, 2008. DOI: 10.1115/GT2008-50120.
  • R. Hou, F. B. Wen, Y. X. Luo, X. L. Tang, and S. T. Wang, “Large eddy simulation of film cooling flow from round and trenched holes,” Int. J. Heat Mass Transf., vol. 144, pp. 118631, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118631.
  • R. Hou, F. B. Wen, S. T. Wang, Y. X. Luo, and X. L. Tang, “Large eddy simulation of the trenched film cooling hole with different compound angles and coolant inflow orientation effects,” Appl. Therm. Eng., vol. 163, pp. 114397, 2019. DOI: 10.1016/j.applthermaleng.2019.114397.
  • F. S. Fan, C. H. Wang, and J. Z. Zhang, “Large eddy simulation of film cooling on turbine vane,” JTST, vol. 14, no. 2, pp. JTST0014–16, 2019. DOI: 10.1299/jtst.2019jtst0014.
  • A. Rozati and D. K. Tafti, “Large-eddy simulations of leading edge film cooling: Analysis of flow structures, effectiveness, and heat transfer coefficient,” Int. J. Heat Fluid Flow, vol. 29, no. 1, pp. 1–17, 2008. DOI: 10.1016/j.ijheatfluidflow.2007.05.001.
  • A. Rozati and D. K. Tafti, “Large eddy simulation of leading edge film cooling—Part II: Heat transfer and effect of blowing ratio,” ASME J. Turbomach., vol. 130, no. 4, pp. 041015-1–7, 2008. DOI: 10.1115/1.2812411.
  • S. Sarkar and H. Babu, “Large eddy simulation on the interactions of wake and film-cooling near a leading edge,” ASME J. Turbomach., vol. 137, no. 1, pp. 011005-1–11, 2015. DOI: 10.1115/1.4028219.
  • J. Smagorinsky, “General circulation experiments with the primitive equations: I. The basic experiment,” Mon. Wea. Rev., vol. 91, no. 3, pp. 99–164, 1963. DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  • L. D. Hylton, M. S. Mihelc, E. R. Turner, D. A. Nealy, and R. E. York, “Analytic and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes,” NASA Lewis Research Center. Ohio, USA. Report No. CR 168015, 1983.
  • F. S. Fan, “Large eddy simulation and experimental study on film cooling flow and heat transfer performance of shallow trenches,” PhD thesis, Nanjing University of Aeronautics and Astronautics. Nanjing, Jiangsu, 2020.
  • J. Ziefle and L. Kleise, “Assessment of a film-cooling flow structure by large-eddy simulation,” J. Turbul., vol. 9, pp. N29, 2008. DOI: 10.1080/14685240802232855.
  • B. A. Haven and M. Kurosaka, “Kidney and anti-kidney vortices in crossflow jets,” J. Fluid Mech., vol. 352, pp. 27–64, 1997. DOI: 10.1017/S0022112097007271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.