Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 8
181
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A novel domain propulsion and adaptive modified inversion method for the inverse geometry heat conduction analysis of FGMs

&
Pages 392-422 | Received 26 Apr 2020, Accepted 04 Jul 2020, Published online: 17 Jul 2020

References

  • K. Bamdad and H. R. Ashorynejad, “Inverse analysis of a rectangular fin using the lattice Boltzmann method,” Energy Convers Manage., vol. 97, pp. 290–297, 2015. DOI: 10.1016/j.enconman.2015.02.075.
  • W. L. Chen, H. M. Chou and Y. C. Yang, “Inverse estimation of the unknown base heat flux in irregular fins made of functionally graded materials,” Int. Commun. Heat Mass., vol. 87, pp. 157–163, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.07.003.
  • F. Bourquin and A. Nassiopoulos, “Inverse reconstruction of initial and boundary conditions of a heat transfer problem with accurate final state,” Int. J. Heat Mass. Tran., vol. 54, no. 15–16, pp. 3749–3760, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.03.014.
  • Z. W. Wang, S. F. Qiu, Z. S. Ruan and W. Zhang, “A regularized optimization method for identifying the space-dependent source and the initial value simultaneously in a parabolic equation,” Comput. Math. Appl., vol. 67, no. 7, pp. 1345–1357, 2014. DOI: 10.1016/j.camwa.2014.02.007.
  • T. Xie, Y. L. He, Z. X. Tong, W. X. Yan and X. Q. Xie, “An inverse analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material,” Appl. Therm. Eng., vol. 87, pp. 214–224, 2015. DOI: 10.1016/j.applthermaleng.2015.05.008.
  • T. T. Ngo, J. H. Huang and C. C. Wang, “Inverse simulation and experimental verification of temperature-dependent thermo physical properties,” Int. Commun. Heat Mass., vol. 71, pp. 137–147, 2016. DOI: 10.1016/j.icheatmasstransfer.2015.12.016.
  • L. Yan, F. L. Yang and C. L. Fu, “A meshless method for solving an inverse spacewise-dependent heat source problem,” J. Comput. Phys., vol. 228, no. 1, pp. 123–136, 2009. DOI: 10.1016/j.jcp.2008.09.001.
  • V. M. Luchesi and R. T. Coelho, “An inverse method to estimate the moving heat source in machining process,” Appl. Therm. Eng., vol. 45-46, pp. 64–78, 2012. DOI: 10.1016/j.applthermaleng.2012.04.014.
  • H. Fazeli and M. Mirzaei, “Shape identification problems on detecting of defects in a solid body using inverse heat conduction approach,” J. Mech. Sci. Technol., vol. 26, no. 11, pp. 3681–3690, 2012. DOI: 10.1007/s12206-012-0842-4.
  • H. B. Wang and Y. Li, “Numerical solution of an inverse boundary value problem for the heat equation with unknown inclusions,” J. Comput. Phys., vol. 369, pp. 1–15, 2018. DOI: 10.1016/j.jcp.2018.05.008.
  • C. H. Huang and Y. L. Chung, “An inverse design problem of estimating the optimal shape of annular fins adhered to a bare tube of an evaporator,” Numer. Heat Tr. A-Appl., vol. 66, no. 11, pp. 1195–1217, 2014. DOI: 10.1080/10407782.2013.873234.
  • M. Nikfar, A. Ashrafizadeh and P. Mayeli, “Inverse shape design via a new physical-based iterative solution strategy,” Inverse Probl. Sci. Eng., vol. 23, no. 7, pp. 1138–1162, 2015. DOI: 10.1080/17415977.2014.973873.
  • S. H. Wang, S. C. Lin and Y. C. Yang, “Geometry estimation for the inner surface in a furnace wall made of functionally graded materials,” Int. Commun. Heat Mass., vol. 67, pp. 1–7, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.06.012.
  • C. R. Su and C. K. Cheng, “Geometry estimation of the furnace inner wall by an inverse approach,” Int J Heat Mass Tran., vol. 50, no. 19-20, pp. 3767–3773, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.02.024.
  • C.-K. Chen and C.-R. Su, “Inverse estimation for temperatures of outer surface and geometry of inner surface of furnace with two layer walls,” Energy Convers. Manage., vol. 49, no. 2, pp. 301–310, 2008. DOI: 10.1016/j.enconman.2007.06.010.
  • C. H. Huang and M. T. Chaing, “A three-dimensional inverse geometry problem in identifying irregular boundary configurations,” Int. J. Therm. Sci., vol. 48, no. 3, pp. 502–513, 2009. DOI: 10.1016/j.ijthermalsci.2008.05.007.
  • A. Karageorghis, D. Lesnic and L. Marin, “The method of fundamental solutions for the detection of rigid inclusions and cavities in plane linear elastic bodies,” Comput. Struct., vol. 106-107, pp. 176–188, 2012. DOI: 10.1016/j.compstruc.2012.05.001.
  • A. Karageorghis, D. Lesnic and L. Marin, “The method of fundamental solutions for three-dimensional inverse geometric elasticity problems,” Comput. Struct., vol. 166, pp. 51–59, 2016. DOI: 10.1016/j.compstruc.2016.01.010.
  • J. V. Beck, B. Blackwell and C. R. Clair, Inverse Heat Conduction: Ill-Posed Problems, New York: Wiley Interscience, 1985.
  • B. Jin and J. Zou, “Inversion of Robin coefficient by a spectral stochastic finite element approach,” J. Comput. Phys., vol. 227, no. 6, pp. 3282–3306, 2008. DOI: 10.1016/j.jcp.2007.11.042.
  • T. Lu, W. W. Han, P. X. Jiang, Y. H. Zhu, J. Wu and C. L. Liu, “A two-dimensional inverse heat conduction problem for simultaneous estimation of heat convection coefficient, fluid temperature and wall temperature on the inner wall of a pipeline,” Prog. Nucl. Energy, vol. 81, pp. 161–168, 2015. DOI: 10.1016/j.pnucene.2015.01.018.
  • M. Cui, Y. Zhao, B. B. Xu, S. D. Wang and X. W. Gao, “Inverse analysis for simultaneously estimating multi-parameters of temperature-dependent thermal conductivities of an Inconel in a reusable metallic thermal protection system,” Appl. Therm. Eng., vol. 125, pp. 480–488, 2017. DOI: 10.1016/j.applthermaleng.2017.06.113.
  • F. Bozzoli, L. Cattani, S. Rainieri, F. S. V. Bazan and L. S. Borges, “Estimation of the local heat transfer coefficient in coiled tubes: Comparison between Tikhonov regularization method and Gaussian filtering technique,” Int. J. Num. Meth. HFF, vol. 27, no. 3, pp. 575–586, 2017. DOI: 10.1108/HFF-03-2016-0097.
  • S. Mohasseb, M. Moradi, T. Sokhansefat, F. Kowsari, A. Kasaeian and O. Mahian, “A novel approach to solve inverse heat conduction problems: Coupling scaled boundary finite element method to a hybrid optimization algorithm,” Eng. Anal. Bound Elem., vol. 84, pp. 206–212, 2017. DOI: 10.1016/j.enganabound.2017.08.018.
  • S. Wen, H. Qi, Y. T. Ren, J. P. Sun and L. M. Ruan, “Solution of inverses radiation-conduction problems using a Kalman filter coupled with the recursive least-square estimator,” Int. J. Heat Mass. Tran., vol. 111, pp. 582–592, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.017.
  • C. Y. Dong, “Shape optimizations of inhomogeneities of two dimensional (2D) and three dimensional (3D) steady state heat conduction problems by the boundary element method,” Eng. Anal. Bound Elem., vol. 60, pp. 67–80, 2015. DOI: 10.1016/j.enganabound.2015.03.007.
  • M. Y. Wang, D. Dutta, K. Kim and J. C. Brigham, “A computationally efficient approach for inverse material characterization combining Gappy POD with direct inversion,” Comput. Methods Appl. Mech. Eng., vol. 286, pp. 373–393, 2015. DOI: 10.1016/j.cma.2015.01.001.
  • C. K. Yang and C. K. Chen, “The boundary estimation in two-dimensional inverse heat conduction problems,” J. Phys. D: Appl. Phys., vol. 29, no. 2, pp. 333–339, 1996. DOI: 10.1088/0022-3727/29/2/009.
  • C. Y. Yang, “Solving the two-dimensional inverse heat source problem through the linear least squares error method,” Int. J. Heat Mass. Tran., vol. 41, no. 2, pp. 393–398, 1998. DOI: 10.1016/S0017-9310(97)00125-7.
  • J. H. Lin, C. K. Chen and Y. T. Yang, “An inverse method for simultaneous estimation of the center and surface thermal behavior of a heated cylinder normal to a turbulent air stream,” J. Heat Trans-T Asem., vol. 124, no. 4, pp. 601–608, 2002. DOI: 10.1115/1.1473140.
  • X. W. Ling, G. K. Russell and H. P. Cherukuri, “A non‐iterative finite element method for inverse heat conduction problems,” Int. J. Numer. Meth. Eng., vol. 56, no. 9, pp. 1315–1334, 2003. DOI: 10.1002/nme.614.
  • A. K. Nallathambi and E. Specht, “Estimation of heat flux in array of jets quenching using experimental and inverse finite element method,” J. Mater. Process Tech., vol. 209, no. 12-13, pp. 5325–5332, 2009. DOI: 10.1016/j.jmatprotec.2009.04.001.
  • B. Yu, H. L. Zhou, Q. Gao and J. Yan, “Geometry boundary identification of the furnace inner wall by BEM without iteration,” Numer. Heat Tr. A-Appl., vol. 69, no. 11, pp. 1253–1262, 2016. DOI: 10.1080/10407782.2016.1139965.
  • B. Li, W. Y. Xu and F. G. Tong, “Measuring thermal conductivity of soils based on least squares finite element method,” Int. J. Heat Mass. Tran., vol. 115, pp. 833–841, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.056.
  • B. Yu, W. A. Yao, Q. Gao, H. L. Zhou and C. Xu, “A novel non-iterative inverse method for estimating boundary condition of the furnace inner wall,” Int. Commun. Heat Mass., vol. 87, pp. 91–97, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.06.017.
  • B. Yu, C. Xu, W. A. Yao and Z. Meng, “Estimation of boundary condition on the furnace inner wall based on precise integration BEM without iteration,” Int. J. Heat Mass. Tran., vol. 122, pp. 823–845, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.039.
  • B. Yu, C. Xu, H. L. Zhou and M. Cui, “A novel non-iterative method for estimating boundary conditions and geometry of furnace inner wall made of FGMs,” Appl. Therm. Eng., vol. 147, pp. 251–271, 2019. DOI: 10.1016/j.applthermaleng.2018.10.075.
  • H. L. Zhou, Y. S. Li, B. Yu and H. L. Chen, “Shape identification for inverse geometry heat conduction problems by FEM without iteration,” Numer. Heat Tr. A-Appl., vol. 72, no. 8, pp. 628–641, 2017. DOI: 10.1080/10407782.2017.1394128.
  • S. Khajehpour, M. R. Hematiyan and L. Marin, “A domain decomposition method for the stable analysis of inverse nonlinear transient heat conduction problems,” Int. J. Heat Mass. Tran., vol. 58, no. 1-2, pp. 125–134, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.075.
  • P. Duda and M. Konieczny, “Solution of an inverse transient heat conduction problem in a part of a complex domain,” Int. J. Heat Mass. Tran., vol. 127, pp. 821–832, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.119.
  • P. Duda and M. Konieczny, “A new algorithm for solving an inverse transient heat conduction problem by dividing a complex domain into parts,” Int. J. Heat Mass. Tran., vol. 128, pp. 865–874, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.064.
  • Z. Li and X. Z. Mao, “Global space-time multiquadric method for inverse heat conduction problem,” Int. J. Numer. Meth. Eng., vol. 85, no. 3, pp. 355–379, 2011. DOI: 10.1002/nme.2975.
  • Z. Chen and T. Chan, “A truncated generalized singular value decomposition algorithm for moving force identification with ill-posed problems,” J. Sound Vib., vol. 401, pp. 297–310, 2017. DOI: 10.1016/j.jsv.2017.05.004.
  • W. A. Yao, B. Yu, X. W. Gao and Q. Gao, “A precise integration boundary element method for solving transient heat conduction problems,” Int. J Heat Mass. Tran., vol. 78, pp. 883–891, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.029.
  • W. X. Zhong and F. W. Williams, “A precise time step integration method,” Proc. Int. Mech. Eng. Part C: J. Mech. Eng., vol. 208, no. 6, pp. 427–430, 1994. DOI: 10.1243/PIME_PROC_1994_208_148_02.
  • B. Chen, L. Tong, Y. Gu, H. Zhang and O. Ochoa, “Transient heat transfer analysis of functionally graded materials using adaptive precise time integration and graded finite elements,” Numer. Heat Tr. B-Fund, vol. 45, no. 2, pp. 181–200, 2004. DOI: 10.1080/1040779049025384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.