Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 8
417
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Modeling the mushy zone during the melting process under Neumann boundary condition using the improved enthalpy-porosity method

, , , &
Pages 423-442 | Received 05 May 2020, Accepted 04 Jul 2020, Published online: 19 Jul 2020

References

  • S. Jevnikar and K. Siddiqui, “Investigation of the influence of heat source orientation on the transient flow behavior during PCM melting using particle image velocimetry,” Journal of Energy Storage, vol. 25, Oct. 2019. DOI: 10.1016/j.est.2019.100825.
  • M. H. Joneidi, M. Rahimi, R. Pakrouh, and R. Bahrampoury, “Experimental analysis of Transient melting process in a horizontal cavity with different configurations of fins,” Renewable Energy, vol. 145, Jan. 2020. DOI: 10.1016/j.renene.2019.07.114.
  • Q. Bian, et al. “Investigation on the effect of the thermal dynamic, evaporation, and alternative material properties in a laser melt pool with a developed 2D model based on the VOSET method,” Numerical Heat Transfer, Part A: Applications, vol. 71, no. 11, pp. 1104–1122, Jun. 2017. DOI: 10.1080/10407782.2017.1330938.
  • C. Chen, A. Sharma, S. K. Tyagi, and D. Buddhi, “Numerical heat transfer studies of PCMs used in a box-type solar cooker,” Renewable Energy, vol. 33, no. 5, pp. 1121–1129, May 2008. DOI: 10.1016/j.renene.2007.06.014.
  • R. Dai, Q. Bian, Q. Wang, and M. Zeng, “Evolution of natural convection melting inside cavity heated from different sides using enthalpy based lattice Boltzmann method,” International Journal of Heat and Mass Transfer, vol. 121, pp. 715–725, June 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.032.
  • R. Rabie, M. Emam, S. Ookawara, and M. Ahmed, “Thermal management of concentrator photovoltaic systems using new configurations of phase change material heat sinks,” Solar Energy, vol. 183, pp. 632–652, May 2019. DOI: 10.1016/j.solener.2019.03.061.
  • R. Benages-Vilau, T. Calvet, M.A. Cuevas-Diarte, and H.A.G. Oonk, “The NaNO3-KNO3 phase diagram,” Phase Transitions, vol. 89, no. 1, pp. 1–20, 2016. DOI: 10.1080/01411594.2015.1083567.
  • L. Begum and M. Hasan, “A numerical study of 3D turbulent melt flow and solidification in a direct chill slab caster with a porous combo bag melt distributor,” Numerical Heat Transfer, Part A: Applications, vol. 67, no. 7, pp. 746–770, 2015. DOI: 10.1080/10407782.2014.949159.
  • A. Felix Regin, S.C. Solanki, and J.S. Saini, “Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations,” Renewable Energy, vol. 31, no. 13, pp. 2025–2041, Oct. 2006. DOI: 10.1016/j.renene.2005.10.011.
  • B. Ding, X. Zhu, H. Wang, X. Y. He, and Y. Tan, “Experimental study on phase change heat transfer characteristics of alloys,” International Journal of Heat and Mass Transfer, vol. 105, pp. 261–269, Feb. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.099.
  • D. Jiang, Z. Liao, P. Li, G. Yu, and C. Xu, “The evolution of the mushy zone during the melting process of a binary nitrate salt,” International Journal of Heat and Mass Transfer, vol. 142, Oct. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118456.2.
  • B. Yang, A. Raza, F. Bai, T. Zhang, and Z. Wang, “Microstructural evolution within mushy zone during paraffin’s melting and solidification,” International Journal of Heat and Mass Transfer, vol. 141, pp. 769–778, Oct. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.07.019.
  • C.J. Ho and R. Viskanta, “Heat transfer during melting from an isothermal vertical wall,” J Heat Transfer, vol. 106, no. 1, pp. 12–19, 1984. DOI: 10.1115/1.3246624.
  • A. Gadgil and D. Gobin, “Analysis of Two-Dimensional Melting in Rectangular Enclosures in Presence of Convection,” Journal of Heat Transfer, vol. 106, no.1, pp. 20–26, Feb. 1984. DOI: 10.1115/1.3246636.
  • K. Sasaguchi, A. Ishihara, and H. Zhang, “Numerical study on utilization of melting of phase change material for cooling of a heated surface at a constant rate,” Numerical Heat Transfer, Part A: Applications, vol. 29, no.1, pp. 19–31, Jan. 1996. DOI: 10.1080/10407789608913776.
  • A. Kumar, M. Založnik, and C. Hervé, “Study of the influence of mushy zone permeability laws on macro- and meso-segregations predictions,” International Journal of Thermal Sciences, vol. 54, pp. 33–47, Apr. 2012. 10.1016/j.ijthermalsci.2011.11.014. DOI: 10.1016/j.ijthermalsci.2011.11.014.
  • B. Chen, L. Song, K. Gao, and F. Liu, “Two zone model for mushy region of solid–liquid phase change based on lattice Boltzmann method,” International Communications in Heat and Mass Transfer, vol. 98, pp. 1–12, Nov. 2018. DOI: 10.1016/j.icheatmasstransfer.2018.05.021.
  • W. Kowalczyk, and A. Delgado, “Numerical simulation of phase change at high hydrostatic pressure under variable-gravity environment,” Numerical Heat Transfer, Part A: Applications, vol. 51, no. 8, pp. 735–751, 2007. DOI: 10.1080/10407780600968585.
  • M. Fadl, and Philip C. Eames, “Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems,” Applied Thermal Engineering, vol. 151, pp. 90–99, Mar. 2019. DOI: 10.1016/j.applthermaleng.2019.01.102.
  • Y. Hong, W. Ye, J. Du, and S. Huang, “Solid-liquid phase-change thermal storage and release behaviors in a rectangular cavity under the impacts of mushy region and low gravity,” International Journal of Heat and Mass Transfer, vol. 130, pp. 1120–1132, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.024.
  • C. Pan et al., “Experimental, numerical and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy region effects,” International Journal of Heat and Mass Transfer, vol. 124, pp. 1015–1024, Sep. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.009.
  • V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase change problems,” International Journal of Heat and Mass Transfer, vol. 30, no. 8, pp. 1709–1719, Aug. 1987. DOI: 10.1016/0017-9310(87)90317-6.
  • J. S. Lim and A. Bejan, “The Prandtl number effect on melting dominated by natural convection,” Journal of Heat Transfer, vol. 114, pp. 784–787, Aug. 1992. DOI: 10.1115/1.2911353.
  • D. Pal and Y. Joshi, “Melting in a side heated tall enclosure by uniformly dissipating heat source,” International Journal of Heat and Mass Transfer, vol. 44, no. 2, pp. 375–387, Aug. 2001. DOI: 10.1016/S0017-9310(00)00116-2.
  • V. R. Voller, A. D. Brent, and C. Prakash, “Modelling the mushy region in a binary alloy,” Applied Mathematical Modelling, vol. 14, no. 6, pp. 320–326, June 1990. DOI: 10.1016/0307-904X(90)90084-I.
  • M. Goel, S. K. Roy, and S. Sengupta. “Laminar forced convection heat transfer in microcapsulated phase change material suspensions,” International Journal of Heat and Mass Transfer, vol. 37, no. 4, pp. 593–604, Mar. 1994, DOI: 10.1016/0017-9310(94)90131-7.
  • C. Gau and R. Viskanta, “Melting and solidification of a pure metal on a vertical wall,” Journal of Heat Transfer, vol. 108, no. 1, pp. 174–181, 1986. DOI: 10.1115/1.3246884.
  • A. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numerical Heat Transfer, Part A: Applications, vol. 13, no. 3, pp. 297–318, 1988. DOI: 10.1080/10407788808913615.
  • O. Bertrand et al., “Melting driven by natural convection A comparison exercise: first results,” International Journal of Thermal Sciences, vol. 38, no. 1, pp. 5–26, Jan. 1999. DOI: 10.1016/S0035-3159(99)80013-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.