Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 11
214
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study of incompressible interfacial flows by an one-step level set method

, , & ORCID Icon
Pages 636-655 | Received 13 Jul 2020, Accepted 30 Jul 2020, Published online: 19 Aug 2020

References

  • K. Ling, K.-K. Guo, S. Zhang and W.-Q. Tao, “A numerical investigation on dynamics of ferrofluid droplet in nonuniform magnetic field,” Numer. Heat Transfer A, vol. 75, no. 10, pp. 690–707, 2019. DOI: 10.1080/10407782.2019.1609277.
  • P. H. Chiu and Y. T. Lin, “A conservative phase field method for solving incompressible two-phase flows,” J. Comput. Phys., vol. 230, no. 1, pp. 185–204, 2011. DOI: 10.1016/j.jcp.2010.09.021.
  • T. Wang, H. Li, Y. Zhang and D. Shi, “Numerical analysis of film boiling in liquid jet impingement,” Numer. Heat Transfer A, vol. 67, no. 12, pp. 1352–1369, 2015. DOI: 10.1080/10407782.2014.965116.
  • S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, New York: Springer-Verlag; 2003.
  • Z. H. Gu, H. L. Wen, S. Ye, R. D. An and C. H. Yu, “Development of a mass-preserving level set redistancing algorithm for simulation of rising bubble,” Numer. Heat Transfer B, vol. 74, no. 4, pp. 699–722, 2018. DOI: 10.1080/10407790.2018.1525157.
  • J. Lee and G. Son, “A level-set method for analysis of particle motion in an evaporating microdroplet,” Numer. Heat Transfer B, vol. 67, no. 1, pp. 25–46, 2015. DOI: 10.1080/10407790.2014.949556.
  • M. Choi, G. Son and W. Shim, “A level-set method for droplet impact and penetration into a porous medium,” Comput. Fluids, vol. 145, pp. 153–166, 2017. DOI: 10.1016/j.compfluid.2016.12.014.
  • K. Kim and G. Son, “Numerical analysis of film boiling in liquid jet impingement,” Numer. Heat Transfer A, vol. 64, no. 9, pp. 695–709, 2013. DOI: 10.1080/10407782.2013.798220.
  • C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • A. Zhang, Y. Wang, D. Sun, S. Yu, B. Yu and Y. Li, “Development of a VOF + LS + SPP method based on FLUENT for simulating bubble behaviors in the electric field,” Numer. Heat Transfer B, vol. 71, no. 2, pp. 186–201, 2017. DOI: 10.1080/10407790.2016.1265308.
  • Z. H. Gu, H. L. Wen, Y. Yao and C. H. Yu, “A volume of fluid method algorithm for simulation of surface tension dominant two-phase flows,” Numer. Heat Transfer B, vol. 76, no. 1, pp. 1–17, 2019. DOI: 10.1080/10407790.2019.1642048.
  • D. Hui, G. Y. Zhang, D. P. Yu, Z. Sun and Z. Zong, “Numerical study of advection schemes for interface-capturing using gradient smoothing method,” Numer. Heat Transfer B, vol. 73, no. 4, pp. 242–261, 2018. DOI: 10.1080/10407790.2018.1462005.
  • Y. Luo, J. Zhang, W. Li, E. Sokolova, Y. Li and W. J. Minkowycz, “Numerical investigation of the bubble growth in horizontal rectangular microchannels,” Numer. Heat Transfer A, vol. 71, no. 12, pp. 1175–1188, 2017. DOI: 10.1080/10407782.2017.1350538.
  • D. M. Anderson, G. B. McFadden and A. A. Wheeler, “Diffuse-interface methods in fluid mechanics,” Annu. Rev. Fluid Mech., vol. 30, no. 1, pp. 139–165, 1998. DOI: 10.1146/annurev.fluid.30.1.139.
  • H. Ding, D. M. S. Peter and C. Shu, “Diffuse interface model for incompressible two-phase flows with large density ratios,” J. Comput. Phys., vol. 226, no. 2, pp. 2078–2095, 2007. DOI: 10.1016/j.jcp.2007.06.028.
  • P. Ding, Z. Liu and R. Zhang, “A parallel finite volume procedure for phase-field simulation of solidification,” Numer. Heat Transfer A, vol. 76, no. 10, pp. 779–798, 2019. DOI: 10.1080/10407782.2019.1673105.
  • P. H. Chiu, “A coupled phase field framework for solving incompressible two-phase flows,” J. Comput. Phys, vol. 392, no. 1, pp. 115–140, 2019. DOI: 10.1016/j.jcp.2019.04.069.
  • Z. Jia, W. Qi and X. Feng Yang, “Numerical approximations to a new phase field model for two phase flows of complex fluids,” Comput. Method. Appl. M, vol. 310, pp. 77–79, 2016. vol DOI: 10.1016/j.cma.2016.06.008.
  • M. Sussman, P. Smereka and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys., vol. 114, no. 1, pp. 146–159, 1994. DOI: 10.1006/jcph.1994.1155.
  • M. H. Chung, “An adaptive cartesian cut-cell/level-set method to simulate incompressible two-phase flows with embedded moving solid boundaries,” Comput. Fluids, vol. 71, no. 2, pp. 469–486, 2013. DOI: 10.1016/j.compfluid.2012.11.002.
  • Y. Sun and C. Beckermann, “Sharp interface tracking using the phase-field equation,” J. Comput. Phys., vol. 220, no. 2, pp. 626–653, 2007. DOI: 10.1016/j.jcp.2006.05.025.
  • C. H. Yu, H. L. Wen, Z. H. Gu and R. D. An, “Numerical simulation of dam-break flow impacting a stationary obstacle by a CLSVOF/IB method,” Commun. Nonlinear. Sci., vol. 79, pp. 104934, 2019. DOI: 10.1016/j.cnsns.2019.104934.
  • I. Chakraborty, G. Biswas and P. S. Ghoshdastidar, “A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids,” Int. J. Heat Mass Transf., vol. 58, no. 1-2, pp. 240–259, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.027.
  • B. M. Ningegowda and B. Premachandran, “A coupled level set and volume of fluid method with multi-directional advection algorithms for two-phase flows with and without phase change,” Int. J. Heat Mass Transf., vol. 122, pp. 182–203, 2018.
  • Y. Y. Tsui, C. Y. Liu and S. W. Lin, “Coupled level-set and volume-of-fluid method for two-phase flow calculations,” Numer. Heat Transfer B, vol. 71, no. 2, pp. 173–185, 2017. DOI: 10.1080/10407790.2016.1265311.
  • Z. Z. Cao, D. L. Sun, B. Yu and J. J. Wei, “A coupled volume of fluid and level set method based on analytic plic for unstructured quadrilateral grids,” Numer. Heat Transfer B, vol. 73, no. 4, pp. 189–205, 2018. DOI: 10.1080/10407790.2018.1454758.
  • A. Salih and S. G. Moulic, “A mass conservation scheme for level set method applied to multiphase incompressible flows,” Int. J. Comput. Meth. Eng. Sci. Mech., vol. 14, no. 4, pp. 271–289, 2013. DOI: 10.1080/15502287.2012.711991.
  • K. Kitamura and T. Nonomura, “Assessment of weno-extended two-fluid modelling in compressible multiphase flows,” Int. J. Comput. Fluid D, vol. 31, no. 3, pp. 188–194, 2017. DOI: 10.1080/10618562.2017.1311410.
  • R. F. Ausas, E. A. Dari and G. C. Buscaglia, “A geometric mass-preserving redistancing scheme for the level set function,” Int. J. Numer. Meth. Fluids, vol. 65, no. 8, pp. 989–1010, 2011. DOI: 10.1002/fld.2227.
  • C. Y. Kao, S. Osher and J. Qian, “Legendre-transform-based fast sweeping methods for static hamilton-jacobi equations on triangulated meshes,” J. Comput. Phys., vol. 227, no. 24, pp. 10209–10225, 2008. DOI: 10.1016/j.jcp.2008.08.016.
  • J. D. van der Waals, “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density,” J. Stat. Phys., vol. 20, no. 2, pp. 200–244, 1979. DOI: 10.1007/BF01011514.
  • T. Biben, K. Kassner and C. Misbah, “Phase-field approach to three-dimensional vesicle dynamics,” Phys. Rev. E., vol. 72, no. 4, pp. 1–15, 2005. DOI: 10.1103/PhysRevE.72.041921.
  • D. Jacqmin, “Contact-line dynamics of a diffuse fluid interface,” J. Fluid Mech., vol. 402, pp. 57–88, 2000. DOI: 10.1017/S0022112099006874.
  • P. Yue, J. J. Feng, C. Liu and J. Shen, “A diffuse-interface method for simulating two-phase flows of complex fluids,” J. Fluid Mech., vol. 515, pp. 293–317, 2004. DOI: 10.1017/S0022112004000370.
  • V. E. Badalassi, H. D. Ceniceros and S. Banerjee, “Computation of multiphase systems with phase field models,” J. Comput. Phys., vol. 190, no. 2, pp. 371–397, 2003. DOI: 10.1016/S0021-9991(03)00280-8.
  • P. C. Hohenberg and B. I. Halperin, “Theory of dynamic critical phenomena,” Rev. Mod. Phys., vol. 49, no. 3, pp. 435–479, 1977. DOI: 10.1103/RevModPhys.49.435.
  • D. Furihata, “A stable and conservative finite difference scheme for the cahn-hilliard equation,” Numer. Math., vol. 87, no. 4, pp. 675–699, 2001.
  • S. Aihara, T. Takaki and N. Takad, “Multi-phase-field modeling using a conservative Allen-Cahn equation for multiphase flow,” Comput. Fluids, vol. 178, no. 15, pp. 141–141, 2019. DOI: 10.1016/j.compfluid.2018.08.023.
  • S. Matsushita and T. Aoki, “A weakly compressible scheme with a diffuse-interface method for low mach number two-phase flows,” J. Comput. Phys., vol. 376, no. 1, pp. 838–862, 2019. DOI: 10.1016/j.jcp.2018.10.019.
  • T. Mitchell, C. Leonardi and A. Fakhari, “Development of a three-dimensional phase-field lattice boltzmann method for the study of immiscible fluids at high density ratios,” Int. J. Multiphas. Flow, vol. 107, pp. 1–15, 2018. DOI: 10.1016/j.ijmultiphaseflow.2018.05.004.
  • R. H. H. Abadi, M. H. Rahimian and A. Fakhari, “Conservative phase-field lattice-boltzmann model for ternary fluids,” J. Comput. Phys., vol. 374, no. 1, pp. 668–691, 2018. DOI: 10.1016/j.jcp.2018.07.045.
  • A. Fakhari, D. Bolster and L. S. Luo, “A weighted multiple-relaxation-time lattice boltzmann method for multiphase flows and its application to partial coalescence cascades,” J. Comput. Phys., vol. 341, no. 15, pp. 22–43, 2017. DOI: 10.1016/j.jcp.2017.03.062.
  • W. Wu, S. L. Zhang, S. F. Wang and K. Ling, “A lattice boltzmann model for interphase conjugate heat transfer,” Numer. Heat Transfer B, vol. 72, no. 2, pp. 130–151, 2017. DOI: 10.1080/10407790.2017.1347002.
  • Z. Wang, L. Xin, Z. Xu and L. Shen, “Lattice boltzmann simulation of heat transfer with phase change in saturated soil during freezing process,” Numer. Heat Transfer B, vol. 72, no. 5, pp. 361–376, 2017. DOI: 10.1080/10407790.2017.1400311.
  • K. Glasner, “Nonlinear preconditioning for diffuse interfaces,” J. Comput. Phys., vol. 174, no. 2, pp. 695–711, 2001. DOI: 10.1006/jcph.2001.6933.
  • J. A. Sethian, “Level set methods and fast marching methods,” SIAM Rev., vol. 41, no. 2, pp. 199–235, 1999. DOI: 10.1137/S0036144598347059.
  • W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma, “Phase-field simulation of solidification,” Annu. Rev. Mater. Res., vol. 32, no. 1, pp. 163–194, 2002. DOI: 10.1146/annurev.matsci.32.101901.155803.
  • T. Coupez, “Convection of local level set function for moving surfaces and interfaces in forming flow,” AIP Conference Proceedings, vol. 908, pp. 61–66, 2007. DOI: 10.1063/1.2740790.
  • L. Ville, L. Silva and T. Coupez, “Convected level set method for the numerical simulation of fluid buckling,” Int. J. Numer. Meth. Fluids, vol. 66, no. 3, pp. 324–344, 2011. DOI: 10.1002/fld.2259.
  • G. S. Jiang and C. W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys., vol. 126, no. 1, pp. 202–228, 1996. DOI: 10.1006/jcph.1996.0130.
  • J. U. Brackbill, D. B. Kothe and C. Zemach, “A continuum method for modeling surface tensions,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • C. K. W. Tam and J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational acoustics,” J. Comput. Phys., vol. 107, no. 2, pp. 262–281, 1993. DOI: 10.1006/jcph.1993.1142.
  • P. C. Chu and C. Fan, “A three-point combined compact difference scheme,” J. Comput. Phys., vol. 140, no. 2, pp. 370–339, 1998. DOI: 10.1006/jcph.1998.5899.
  • P. H. Chiu and T. W. H. Sheu, “On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation,” J. Comput. Phys., vol. 228, no. 10, pp. 3640–3655, 2009. DOI: 10.1016/j.jcp.2009.02.008.
  • P. H. Chiu, T. W. H. Sheu and R. K. Lin, “Development of a dispersion-relation-preserving upwinding scheme for incompressible navier-stokes equations on non-staggered grids,” Numer. Heat Transfer B, vol. 48, no. 6, pp. 543–569, 2005. DOI: 10.1080/10407790500315688.
  • G. H. Golub, L. C. Huang, H. Simon and W. P. Tang, “A fast poisson solver for the finite difference solution of the incompressible navier-stokes equation,” SIAM J. Sci. Comput., vol. 19, no. 5, pp. 1606–1624, 1998. DOI: 10.1137/S1064827595285299.
  • W. J. Rider and D. B. Kothey, “Reconstructing volume tracking,” J. Comput. Phys., vol. 141, no. 2, pp. 112–152, 1998. DOI: 10.1006/jcph.1998.5906.
  • S. T. Zalesak, “Fully multi-dimensional flux corrected transport algorithm for fluid flow,” J. Comput. Phys., vol. 31, no. 3, pp. 335–362, 1979. DOI: 10.1016/0021-9991(79)90051-2.
  • R. F. Dressler, “Comparison of theories and experiments for the hydraulic dam-break wave,” Int. Assoc. Sci. Hydrol., vol. 3, no. 38, pp. 319–328, 1954.
  • D. L. Sun and W. Q. Tao, “A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows,” Int. J. Heat Mass Transf., vol. 53, no. 4, pp. 645–655, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.10.030.
  • J. C. Martin and W. J. Moyce, “Part iv. an experimental study of the collapse of liquid columns on a rigid horizontal plane,” Philos. Trans. Roy. Soc. Lond.: Ser. A, vol. 224, no. 882, pp. 312–324, 1952.
  • J. L. Guermond and L. Quartapelle, “A projection FEM for variable density incompressible flows,” J. Comput. Phys., vol. 165, no. 1, pp. 167–188, 2000. DOI: 10.1006/jcph.2000.6609.
  • T. Grétar, “Numerical simulations of the rayleigh-taylor instability,” J. Comput. Phys., vol. 75, no. 2, pp. 253–282, 1988.
  • E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys., vol. 210, no. 1, pp. 225–246, 2005. DOI: 10.1016/j.jcp.2005.04.007.
  • D. Bhaga and M. E. Weber, “Bubbles in viscous liquids: Shapes, wakes, and velocities,” J. Fluid Mech., vol. 105, no. 1, pp. 61–85, 1981. DOI: 10.1017/S002211208100311X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.