Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 11
207
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Thermal effect and optimal design of cooling pipes on mass concrete with constant quantity of water flow

, &
Pages 619-635 | Received 15 Jul 2020, Accepted 30 Jul 2020, Published online: 21 Aug 2020

References

  • X. Z. Yu, J. Y. Chen, Q. Xu and Z. Zhou, “Research on the Influence Factors of Thermal Cracking in Mass Concrete by Model Experiments,” KSCE J. Civil Eng., vol. 22, no. 8, pp. 2906–2915, 2018. DOI: 10.1007/s12205-017-2711-2.
  • C. X. Qian and G. B. Gao, “Reduction of interior temperature of mass concrete using suspension of phase change materials as cooling fluid,” Construct. Build. Mater., vol. 26, no. 1, pp. 527–531, 2012. DOI: 10.1016/j.conbuildmat.2011.06.053.
  • T. S. Seo, S. S. Kim and C. K. Lim, “Experimental study on hydration heat control of mass concrete by vertical pipe cooling method,” J. Asian Architect. Build. Eng., vol. 14, no. 3, pp. 657–662, 2015. DOI: 10.3130/jaabe.14.657.
  • A. Tasri and A. Susilawati, “Effect of cooling water temperature and space between cooling pipes of post-cooling system on temperature and thermal stress in mass concrete,” J. Build. Eng., vol. 24, pp. 100731, 2019. DOI: 10.1016/j.jobe.2019.100731.
  • B. F. Zhu, “The equivalent heat conduction equation of pipe cooling in mass concrete considering influence of external temperature,” J. Hydraul. Eng., vol. 34, no. 3, pp. 49–54, 2003.
  • J. K. Yang, Y. Lee and J. K. Kim, “Heat Transfer Coefficient in Flow Convection of Pipe-Cooling System in Massive Concrete,” ACT, vol. 9, no. 1, pp. 103–114, 2011. DOI: 10.3151/jact.9.103.
  • Z. Y. Zhu, S. Qiang and W. M. Chen, “A new method solving the temperature field of concrete around cooling pipes,” Comput Concrete, vol. 11, no. 5, pp. 441–462, 2013. DOI: 10.12989/cac.2013.11.5.441.
  • A. T. Al-Sammarraie and K. Vafai, “Heat transfer augmentation through convergence angles in a pipe,” Numer. Heat Transf. Part A Appl. , vol. 72, no. 3, pp. 197–214, 2017. DOI: 10.1080/10407782.2017.1372670.
  • X. Liu, C. Zhang, X. Chang, et al., “Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system,” Appl. Therm. Eng., vol. 78, pp. 449–459, 2015. DOI: 10.1016/j.applthermaleng.2014.12.050.
  • X. H. Liu, Y. Duan, W. Zhou and X. L. Chang, “Modeling the Piped Water Cooling of a Concrete Dam Using the Heat-Fluid Coupling Method,” J. Eng. Mech., vol. 139, no. 9, pp. 1278–1289, 2013. DOI: 10.1061/(ASCE)EM.1943-7889.0000532.
  • R. Zhong, G. P. Hou and S. Qiang, “An improved composite element method for the simulation of temperature field in massive concrete with embedded cooling pipe,” Appl. Therm. Eng., vol. 124, pp. 1409–1417, 2017. CDOI: 10.1016/j.applthermaleng.2017.06.124.
  • G. R. Chen, X. F. Ding, M. X. Cai and W. Z. Qiao, “Analytical solution for temperature field of nonmetal cooling pipe embedded in mass concrete,” Appl. Therm. Eng., vol. 158, pp. 113774, 2019. DOI: 10.1016/j.applthermaleng.2019.113774.
  • J. Cheng, T. C. Li, X. Q. Liu and L. H. Zhao, “A 3D discrete FEM iterative algorithm for solving the water pipe cooling problems of massive concrete structures,” Int. J. Numer. Anal. Meth. Geomech., vol. 40, no. 4, pp. 487–508, 2016. DOI: 10.1002/nag.2409.
  • S. Qiang, Z. Q. Xie and R. Zhong, “A p-version embedded model for simulation of concrete temperature fields with cooling pipes,” Water Sci. Eng., vol. 8, no. 3, pp. 248–256, 2015. DOI: 10.1016/j.wse.2015.08.001.
  • S. Y. Reutskiy, “A meshless radial basis function method for 2D steady-state heat conduction problems in anisotropic and inhomogeneous media,” Eng. Anal. Bound. Elem., vol. 66, pp. 1–11, 2016. DOI: 10.1016/j.enganabound.2016.01.013.
  • M. Jamil and E. Y. K. Ng, “Evaluation of meshless radial basis collocation method (RBCM) for heterogeneous conduction and simulation of temperature inside the biological tissues,” Int. J. Therm. Sci., vol. 68, pp. 42–52, 2013. DOI: 10.1016/j.ijthermalsci.2013.01.007.
  • S. Q. Lyu, C. Wu and S. F. Zhang, “Application of the RBF Method to the Estimation of Temperature on the External Surface in Laminar Pipe Flow,” Math. Probl. Eng., vol. 2013, pp. 1–11, 2013. DOI: 10.1155/2013/205169.
  • G. M. Yao, C. S. Chen and H. Zheng, “A Modified Method of Approximate Particular Solutions for Solving Linear and Nonlinear PDEs,” Numer. Methods Partial Differential Eq., vol. 33, no. 6, pp. 1839–1858, 2017. DOI: 10.1002/num.22161.
  • A. H.-D. Cheng, M. A. Golberg, E. J. Kansa, et al., “Exponential convergence and HC c multiquadric collocation method for partial differential equations,” Numer. Methods Partial Differential Eq., vol. 19, no. 5, pp. 571–594, 2003., DOI: 10.1002/num.10062.
  • W. Chen, Y. Hong and J. Lin, “The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method,” Comp. Math. Appl., vol. 75, no. 8, pp. 2942–2954, 2018. DOI: 10.1016/j.camwa.2018.01.023.
  • C. S. Liu, W. Chen and Z. Fu, “A multiple-scale MQ-RBF for solving the inverse Cauchy problems in arbitrary plane domain,” Eng. Anal. Bound. Elem., vol. 68, pp. 11–16, 2016. DOI: 10.1016/j.enganabound.2016.02.011.
  • C. S. Liu and C. W. Chang, “An energy regularization of the MQ-RBF method for solving the Cauchy problems of diffusion-convection-reaction equations,” Commun. Nonlinear Sci. Numer. Simul., vol. 67, pp. 375–390, 2019. DOI: 10.1016/j.cnsns.2018.07.002.
  • A. I. Tolstykh and D. A. Shirobokov, “On using radial basis functions in a” finite difference mode” with applications to elasticity problems,” Comput. Mech., vol. 33, no. 1, pp. 68–79, 2003. DOI: 10.1007/s00466-003-0501-9.
  • C. S. Chen and A. Karageorghis, “Local RBF Algorithms for Elliptic Boundary Value Problems in Annular Domains,” CiCP, vol. 25, no. 1, pp. 41–67, 2019. DOI: 10.4208/cicp.OA-2018-0031.
  • B. Fornberg and N. Flyer, “Solving PDEs with radial basis functions,” Acta Numer., vol. 24, pp. 215–258, 2015. DOI: 10.1017/S0962492914000130.
  • V. Shankar, G. B. Wright, R. M. Kirby and A. L. Fogelson, “A Radial Basis Function (RBF)-Finite Difference (FD) Method for diffusion and reaction-diffusion equations on surfaces ,” J. Sci. Comput., vol. 63, no. 3, pp. 745–768, 2016. DOI: 10.1007/s10915-014-9914-1.
  • L. D. Su, “A radial basis function (RBF)-finite difference (FD) method for the backward heat conduction problem,” Appl. Math. Comput., vol. 354, pp. 232–247, 2019. DOI: 10.1016/j.amc.2019.02.035.
  • Y. X. Hong, J. Lu, J. Lin and W. Chen, “Numerical Simulation of Non-Linear Schrodinger Equations in Arbitrary Domain by the Localized Method of Approximate Particular Solution,” AAMM, vol. 11, no. 1, pp. 108–131, 2019. DOI: 10.4208/aamm.OA-2018-0026.
  • Y. X. Hong, J. Lin and W. Chen, “Simulation of thermal field in mass concrete structures with cooling pipes by the localized radial basis function collocation method,” Int. J. Heat Mass Transf., vol. 129, pp. 449–459, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.037.
  • Y. X. Hong, W. Chen, J. Lin, et al., “Thermal field in water pipe cooling concrete hydrostructures simulated with singular boundary method,” Water Sci. Eng., vol. 10, no. 2, pp. 107–114, 2017., DOI: 10.1016/j.wse.2017.06.004.
  • J. Slak and G. Kosec, “Adaptive radial basis function-generated finite differences method for contact problems,” Int. J. Numer. Methods Eng., vol. 119, no. 7, pp. 661–686, 2019. DOI: 10.1002/nme.6067.
  • Y. X. Hong, J. Lin, A. H.-D. Cheng, Y. Wang and W. Chen, “Thermal analysis of heat transfer in pipe cooling concrete structure by a meshless RBF-FD method combined with an indirect model,” Int. J. Therm. Sci., vol. 152, pp. 106296, 2020. DOI: 10.1016/j.ijthermalsci.2020.106296.
  • G. H. An, J. M. Park, S. L. Cha and J. K. Kim, “Development of a portable device and compensation method for the prediction of the adiabatic temperature rise of concrete,” Construct. Build. Mater., vol. 102, pp. 640–647, 2016. DOI: 10.1016/j.conbuildmat.2015.10.143.
  • P. R. Singh and D. C. Rai, “Effect of piped water cooling on thermal stress in mass concrete at early ages,” J. Eng. Mech., vol. 144, no. 3, pp. 04017183, 2018. DOI: 10.1061/(ASCE)EM.1943-7889.0001418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.