Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 11
82
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Buoyant Marangoni convection of nanofluids in right-angled trapezoidal cavity

, , &
Pages 656-673 | Received 15 Jul 2020, Accepted 30 Jul 2020, Published online: 24 Aug 2020

References

  • S. Ostrach, “Natural convection in enclosures,” J. Heat Transfer, vol. 110, no. 4b, pp. 1175–1190, 1988. DOI: 10.1115/1.3250619.
  • D. Schwabe, “Marangoni effects in crystal growth melts,” Physicochem. Hydrodyn., vol. 2, pp. 263–280, 1981.
  • S. Ostrach, “Low-gravity fluid flows,” Annu. Rev. Fluid Mech., vol. 14, no. 1, pp. 313–345, 1982. DOI: 10.1146/annurev.fl.14.010182.001525.
  • M. Hamed and J. Floryan, “Marangoni convection. Part 1. A cavity with differentially heated sidewalls,” J. Fluid Mech., vol. 405, pp. 79–110, 2000. DOI: 10.1017/S002211209900734X.
  • D. Schwabe, “Surface–tension–driven flow in crystal growth melts,” in Superhard Materials, Convection and Optical Devices. Crystals (Growth, Properties, and Applications), vol. 11. Berlin, Heidelberg: Springer, 1988, pp. 75–112.
  • A. Alhashash and H. Saleh, “Combined solutal and thermal buoyancy thermocapillary convection in a square open cavity,” JAFM, vol. 10, no. 4, pp. 1113–1124, 2017. DOI: 10.18869/acadpub.jafm.73.241.27297.
  • M. Sankar, M. Venkatachalappa, and Y. Do, “Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure,” Int. J. Heat Fluid Flow, vol. 32, no. 2, pp. 402–412, 2011. DOI: 10.1016/j.ijheatfluidflow.2010.12.001.
  • M. Saleem, M. A. Hossain, S. Mahmud, and I. Pop, “Entropy generation in Marangoni convection flow of heated fluid in an open ended cavity,” Int. J. Heat Mass Transfer, vol. 54, no. 21–22, pp. 4473–4484, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.033.
  • T. Qin and R. O. Grigoriev, “The effect of noncondensables on buoyancy–thermocapillary convection of volatile fluids in confined geometries,” Int. J. Heat Mass Transfer, vol. 90, pp. 678–688, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.074.
  • B. Messmer, T. Lemee, K. Ikebukuro, I. Ueno, and R. Narayanan, “Confined thermo–capillary flows in a double free–surface film with small Marangoni numbers,” Int. J. Heat Mass Transfer, vol. 78, pp. 1060–1067, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.06.053.
  • D. D. Ganji, Y. Sabzehmeidani, and A. Sedighiamiri, "Heat transfer in Nanofluids", in Nonlinear Systems in Heat Transfer: Mathematical Modeling and Analytical Methods, New York, USA: Elsevier, pp. 153–223, 2018. DOI: 10.1016/B978-0-12-812024-8.00004-7.
  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Argonne National Lab., IL, USA, Tech. Rep., 1995.
  • M. Sheikholeslami and O. Mahian, “Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems,” J. Cleaner Prod., vol. 215, pp. 963–977, 2019. DOI: 10.1016/j.jclepro.2019.01.122.
  • O. Mahian, et al., “Recent advances in modeling and simulation of nanofluid flows part I: Fundamental and theory,” Phys. Rep., vol. 790, pp. 1–48, 2019. DOI: 10.1016/j.physrep.2018.11.004.
  • O. Mahian, A. Kianifar, S. Z. Heris, and S. Wongwises, “Natural convection of silica nanofluids in square and triangular enclosures:Theoretical and experimental study,” Int. J. Heat Mass Transfer, vol. 99, pp. 792–804, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.045.
  • O. A. Akbari, D. Toghraie, A. Karimipour, A. Marzban, and G. R. Ahmadi, “The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid,” Phys. E Low-Dimensional Syst. Nanostruct., vol. 86, pp. 68–75, 2017. DOI: 10.1016/j.physe.2016.10.013.
  • M. Sheikholeslami, M. Jafaryar, A. Shafee, Z. Li, and R. U. Haq, “Heat transfer of nanoparticles employing innovative turbulator considering entropy generation,” Int. J. Heat Mass Transfer, vol. 136, pp. 1233–1240, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.091.
  • S. Z. Heris, M. N. Esfahany, and S. G. Etemad, “Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube,” Int. J. Heat Fluid Flow, vol. 28, no. 2, pp. 203–210, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.05.001.
  • H. Aminfar, M. Mohammadpourfard, and F. Mohseni, “Numerical investigation of thermocapillary and buoyancy driven convection of nanofluids in a floating zone,” Int. J. Mech. Sci., vol. 65, no. 1, pp. 147–156, 2012. DOI: 10.1016/j.ijmecsci.2012.09.013.
  • H. Saleh and I. Hashim, “Buoyant Marangoni convection of nanofluids in square cavity,” Appl. Math. Mech.-Engl. Ed., vol. 36, no. 9, pp. 1169–1184, 2015. DOI: 10.1007/s10483-015-1973-6.
  • A. Al-Sharafi, A. Z. Sahin, B. S. Yilbas, and S. Shuja, “Marangoni convection flow and heat transfer characteristics of water–CNT nanofluid droplets,” Num. Heat Transfer, Part A: Appl., vol. 69, no. 7, pp. 763–780, 2016. DOI: 10.1080/10407782.2015.1090809.
  • A. Abdullah, S. Althobaiti, and K. Lindsay, “Marangoni convection in water–alumina nanofluids: Dependence on the nanoparticle size,” Eur. J. Mech.-B/Fluids, vol. 67, pp. 259–268, 2018. DOI: 10.1016/j.euromechflu.2017.09.015.
  • Y. Jiang and X. Zhou, “Analysis of flow and heat transfer characteristics of nanofluids surface tension driven convection in a rectangular cavity,” Int. J. Mech. Sci., vol. 153–154, pp. 154–163, 2019. DOI: 10.1016/j.ijmecsci.2019.01.034.
  • S. Tanvir and L. Qiao, “Surface tension of nanofluid-type fuels containing suspended nanomaterials,” Nanoscale Res. Lett., vol. 7, no. 1, pp. 226, 2012. DOI: 10.1186/1556-276X-7-226.
  • G. Lu, Y. Y. Duan, and X. D. Wang, “Surface tension, viscosity, and rheology of water–based nanofluids: A microscopic interpretation on the molecular level,” J. Nanopart Res., vol. 16, no. 9, pp. 2564, 2014. DOI: 10.1007/s11051-014-2564-2.
  • M. Bhuiyan, R. Saidur, R. Mostafizur, I. Mahbubul, and M. Amalina, “Experimental investigation on surface tension of metal oxide–water nanofluids,” Int. Commun. Heat Mass Transfer, vol. 65, pp. 82–88, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.01.002.
  • R. Kumar and D. Milanova, “Effect of surface tension on nanotube nanofluids,” Appl. Phys. Lett., vol. 94, no. 7, pp. 073107, 2009. DOI: 10.1063/1.3085766.
  • R. H. Chen, T. X. Phuoc and D. Martello, “Surface tension of evaporating nanofluid droplets,” Int. J. Heat Mass Transfer, vol. 54, no. 11–12, pp. 2459–2466, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.016.
  • S. Vafaei, A. Purkayastha, A. Jain, G. Ramanath, and T. Borca-Tasciuc, “The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids,” Nanotechnology, vol. 20, no. 18, pp. 185702, 2009. DOI: 10.1088/0957-4484/20/18/185702.
  • J. Chinnam, D. K. Das, R. S. Vajjha, and J. R. Satti, “Measurements of the surface tension of nanofluids and development of a new correlation,” Int. J. Therm. Sci., vol. 98, pp. 68–80, 2015. DOI: 10.1016/j.ijthermalsci.2015.07.008.
  • J. Koo and C. Kleinstreuer, “Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids,” Int. Commun. Heat Mass Transfer, vol. 32, no. 9, pp. 1111–1118, 2005. DOI: 10.1016/j.icheatmasstransfer.2005.05.014.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund., vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • S. Roy and T. Basak, “Finite element analysis of natural convection flows in a square cavity with non–uniformly heated wall(s),” Int. J. Eng. Sci., vol. 43, no. 8-9, pp. 668–680, 2005. DOI: 10.1016/j.ijengsci.2005.01.002.
  • T. Basak, S. Roy, and A. Balakrishnan, “Effects of thermal boundary conditions on natural convection flows within a square cavity,” Int. J. Heat Mass Transfer, vol. 49, no. 23–24, pp. 4525–4535, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.05.015.
  • G. de Vahl Davis, “Natural convection of air in a square cavity: A bench mark numerical solution,” Int. J. Numer. Methods Fluids, vol. 3, no. 3, pp. 249–264, 1983. DOI: 10.1002/fld.1650030305.
  • K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • H. Cheong, Z. Siri, and S. Sivasankaran, “Effect of aspect ratio on natural convection in an inclined rectangular enclosure with sinusoidal boundary condition,” Int. Commun. Heat Mass Transfer, vol. 45, pp. 75–85, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.04.017.
  • H. B. Hadid and B. Roux, “Buoyancy– and thermocapillary–driven flows in differentially heated cavities for low–Prandtl–number fluids,” J. Fluid Mech., vol. 235, no. 1, pp. 1–36, 1992. DOI: 10.1017/S0022112092001009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.