Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 12
308
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Supercritical CO2 flowing upward in a vertical tube subject to axially nonuniform heating

, , ORCID Icon & ORCID Icon
Pages 717-736 | Received 16 Jul 2020, Accepted 30 Jul 2020, Published online: 14 Aug 2020

References

  • I. L. Pioro, H. F. Khartabil and R. B. Duffey, “Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey),” Nucl. Eng. Des., vol. 230, no. 1-3, pp. 69–91, 2004. DOI: 10.1016/j.nucengdes.2003.10.010.
  • I. Pioro, “Heat-transfer at supercritical pressures,” in 2010 14th International Heat Transfer Conference, IHTC 14, 2010, vol. 7, pp. 369–382, DOI: 10.1115/IHTC14-23403.
  • Y. Ahn, et al., “Review of supercritical CO2 power cycle technology and current status of research and development,” Nucl. Eng. Technol., vol. 47, no. 6, pp. 647–661, 2015. DOI: 10.1016/j.net.2015.06.009.
  • J. Sarkar, “Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion,” Renew. Sustain. Energy Rev., vol. 48, pp. 434–451, 2015. DOI: 10.1016/j.rser.2015.04.039.
  • I. L. Pioro and R. B. Duffey, “Experimental heat transfer in supercritical water flowing inside channels (survey),” Nucl. Eng. Des., vol. 235, no. 22, pp. 2407–2430, 2005. DOI: 10.1016/j.nucengdes.2005.05.034.
  • I. Pioro and S. Mokry, “Heat Transfer to Supercritical Fluids,” in Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems, London: InTech, 2011
  • S. Bovard, M. Abdi, M. R. K. Nikou and A. Daryasafar, “Numerical investigation of heat transfer in supercritical CO2 and water turbulent flow in circular tubes,” J. Supercrit. Fluids, vol. 119, pp. 88–103, 2017. DOI: 10.1016/j.supflu.2016.09.010.
  • Q. Zhang, H. Li, X. Kong, J. Liu and X. Lei, “Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux,” Int. J. Heat Mass Transf., vol. 122, pp. 469–482, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.112.
  • Y. Y. Bae, H. Y. Kim and D. J. Kang, “Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube,” Exp. Therm. Fluid Sci., vol. 34, no. 8, pp. 1295–1308, 2010. DOI: 10.1016/j.expthermflusci.2010.06.001.
  • P. X. Jiang, Y. Zhang, C. R. Zhao and R. F. Shi, “Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers,” Exp. Therm. Fluid Sci., vol. 32, no. 8, pp. 1628–1637, 2008. DOI: 10.1016/j.expthermflusci.2008.05.006.
  • P. X. Jiang, Y. Zhang, Y. J. Xu and R. F. Shi, “Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers,” Int. J. Therm. Sci., vol. 47, no. 8, pp. 998–1011, 2008. DOI: 10.1016/j.ijthermalsci.2007.08.003.
  • D. E. Kim and M. H. Kim, “Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube,” Int. J. Heat Fluid Flow, vol. 32, no. 1, pp. 176–191, 2011. DOI: 10.1016/j.ijheatfluidflow.2010.09.001.
  • X. Lei, J. Zhang, L. Gou, Q. Zhang and H. Li, “Experimental study on convection heat transfer of supercritical CO2 in small upward channels,” Energy, vol. 176, pp. 119–130, 2019. DOI: 10.1016/j.energy.2019.03.109.
  • S. Yildiz and D. C. Groeneveld, “Diameter effect on supercritical heat transfer,” Int. Commun. Heat Mass Transf., vol. 54, pp. 27–32, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.02.017.
  • R. B. Lakeh, A. S. Lavine, H. P. Kavehpour, G. B. Ganapathi and R. E. Wirz, “Effect of laminar and turbulent buoyancydriven flows on thermal energy storage using supercritical fluids,” Numer. Heat Transf. Part A Appl., vol. 64, no. 12, pp. 955–973, 2013. DOI: 10.1080/10407782.2013.811349.
  • G. Liu, Y. Huang, J. Wang and F. Lv, “Effect of buoyancy and flow acceleration on heat transfer of supercritical CO2 in natural circulation loop,” Int. J. Heat Mass Transf., vol. 91, pp. 640–646, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.08.009.
  • M. Bazargan and M. Mohseni, “The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid,” J. Supercrit. Fluids, vol. 51, no. 2, pp. 221–229, 2009. DOI: 10.1016/j.supflu.2009.08.004.
  • R. N. Xu, F. Luo and P. X. Jiang, “Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements,” Int. J. Heat Mass Transf, vol. 110, pp. 576–586, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.063.
  • J. Xie, H. Yan, B. Sundén and G. Xie, “A numerical prediction on heat transfer characteristics from a circular tube in supercritical fluid crossflow,” Appl. Therm. Eng., vol. 153, pp. 692–703, 2019. DOI: 10.1016/j.applthermaleng.2019.03.062.
  • D. Huang, Z. Wu, B. Sunden and W. Li, “A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress,” Appl. Energy, vol. 162, pp. 494–505, 2016. DOI: 10.1016/j.apenergy.2015.10.080.
  • M. M. Ehsan, Z. Guan and A. Y. Klimenko, “A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications,” Renew. Sustain. Energy Rev., vol. 92, pp. 658–675, 2018. DOI: 10.1016/j.rser.2018.04.106.
  • Z. Yang, X. Cheng, X. Zheng and H. Chen, “Numerical investigation on heat transfer of the supercritical fluid upward in vertical tube with constant wall temperature,” Int. J. Heat Mass Transf., vol. 128, pp. 875–884, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.049.
  • M. Ouzzane and N. Galanis, “Developing mixed convection in an inclined tube with circumferentially nonuniform heating at its outer surface,” Numer. Heat Transf. Part A Appl., vol. 35, no. 6, pp. 609–628, 1999. DOI: 10.1080/104077899275065.
  • Y. H. Fan and G. H. Tang, “Numerical investigation on heat transfer of supercritical carbon dioxide in a vertical tube under circumferentially non-uniform heating,” Appl. Therm. Eng., vol. 138, pp. 354–364, 2018. DOI: 10.1016/j.applthermaleng.2018.04.060.
  • Y. H. Fan, G. H. Tang, X. L. Li, D. L. Yang and S. Q. Wang, “Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes,” Energy, vol. 170, pp. 480–496, 2019. DOI: 10.1016/j.energy.2018.12.151.
  • H. Wang, Z. Hu, H. Gu, Y. Luo, R. Tang and T. Chen, “Heat transfer characteristic of water at near critical pressure in circumferentially non-uniformly heated vertical tubes,” Int. J. Therm. Sci., vol. 54, pp. 167–175, 2012. DOI: 10.1016/j.ijthermalsci.2011.12.008.
  • Z. Li, Y. Wu, J. Lu, D. Zhang and H. Zhang, “Heat transfer to supercritical water in circular tubes with circumferentially non-uniform heating,” Appl. Therm. Eng., vol. 70, no. 1, pp. 190–200, 2014. DOI: 10.1016/j.applthermaleng.2014.05.013.
  • H. Zhang, J. Guo, X. Cui and X. Huai, “Heat transfer performance of supercritical pressure CO2 in a non-uniformly heated horizontal tube,” Int. J. Heat Mass Transf., vol. 155, pp. 119748, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119748.
  • A. Bejan and S. Lorente, Eds., Design with Constructal Theory. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008
  • A. Bejan, Shape and Structure, from Engineering to Nature. Cambridge, UK: Cambridge University Press, 2000
  • A. K. da Silva, S. Lorente and A. Bejan, “Optimal distribution of discrete heat sources on a plate with laminar forced convection,” Int. J. Heat Mass Transf., vol. 47, no. 10-11, pp. 2139–2148, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.12.009.
  • M. R. Hajmohammadi, S. S. Nourazar, A. Campo and S. Poozesh, “Optimal discrete distribution of heat flux elements for in-tube laminar forced convection,” Int. J. Heat Fluid Flow, vol. 40, pp. 151–164, 2013. DOI: 10.1016/j.ijheatfluidflow.2013.01.010.
  • M. R. Hajmohammadi, S. Poozesh, M. Rahmani and A. Campo, “Heat transfer improvement due to the imposition of non-uniform wall heating for in-tube laminar forced convection,” Appl. Therm. Eng., vol. 61, no. 2, pp. 268–277, 2013. DOI: 10.1016/j.applthermaleng.2013.08.009.
  • M. R. Hajmohammadi, M. Rahmani, A. Campo and O. J. Shariatzadeh, “Optimal design of unequal heat flux elements for optimized heat transfer inside a rectangular duct,” Energy, vol. 68, pp. 609–616, 2014. DOI: 10.1016/j.energy.2014.02.011.
  • M. K. Rowinski, J. Zhao, T. J. White and Y. C. Soh, “Numerical investigation of supercritical water flow in a vertical pipe under axially non-uniform heat flux,” Prog. Nucl. Energy, vol. 97, pp. 11–25, 2017. DOI: 10.1016/j.pnucene.2016.12.009.
  • Y. Jin, Z. Li, N. Yuan, Y. Yao, Y. Zhai and Z. Li, “Flow and heat transfer of supercritical water in a rifled tube with axially non-uniform heating,” Appl. Therm. Eng., vol. 169, pp. 114923, 2020. DOI: 10.1016/j.applthermaleng.2020.114923.
  • E. W. Lemmon, I. H. Bell, M. L. Huber and M. O. McLinden, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute Of Standards and Technology, 2018. DOI: 10.18434/T4JS3C.
  • R. Span and W. Wagner, “A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa,” J. Phys. Chem. Ref. Data, vol. 25, no. 6, pp. 1509–1596, 1996. DOI: 10.1063/1.555991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.