Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 12
296
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Multi-objective optimization of the cooling performance of a mini-channel with boot-shaped ribs in transcritical regions using RSM and MOGA

, &
Pages 737-755 | Received 16 Jul 2020, Accepted 30 Jul 2020, Published online: 27 Aug 2020

References

  • Y. Jiang, et al., “Parametric study on the distribution of flow rate and heat sink utilization in cooling channels of advanced aero-engines,” Energy, vol. 138, pp. 1056–1068, 2017. DOI: 10.1016/j.energy.2017.07.091.
  • S. Zhang, Y. Feng, D. Zhang, Y. Jiang, J. Qin and W. Bao, “Parametric numerical analysis of regenerative cooling in hydrogen fueled scramjet engines,” Int. J. Hydrogen Energy, vol. 41, no. 25, pp. 10942–10960, 2016. DOI: 10.1016/j.ijhydene.2016.03.176.
  • M. Pizzarelli, F. Nasuti and M. Onofri, “CFD analysis of transcritical methane in rocket engine cooling channels,” J. Supercrit. Fluids, vol. 62, pp. 79–87, 2012. DOI: 10.1016/j.supflu.2011.10.014.
  • L. Liu, Z. Xiao, X. Yan, X. Zeng and Y. Huang, “Numerical simulation of heat transfer deterioration phenomenon to supercritical water in annular channel,” Ann. Nucl. Energy, vol. 53, pp. 170–181, 2013. DOI: 10.1016/j.anucene.2012.08.022.
  • S. Bovard, M. Abdi, M. R. K. Nikou and A. Daryasafar, “Numerical investigation of heat transfer in supercritical CO2 and water turbulent flow in circular tubes,” J. Supercrit. Fluids, vol. 119, pp. 88–103, 2017. DOI: 10.1016/j.supflu.2016.09.010.
  • Z. Li, et al., “Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement,” Appl. Energy, vol. 178, pp. 126–141, 2016. DOI: 10.1016/j.apenergy.2016.06.018.
  • M. Pizzarelli, F. Nasuti and M. Onofri, “Analysis of curved-cooling-channel flow and heattransfer in rocket engines,” J. Propul. Power, vol. 27, no. 5, pp. 1045–1053, 2011. DOI: 10.2514/1.B34163.
  • K. Xu, L. Tang and H. Meng, “Numerical study of supercritical-pressure fluid flows and heat transfer of methane in ribbed cooling tubes,” Int. J. Heat Mass Transfer, vol. 84, pp. 346–358, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.041.
  • B. A. Sunden, Z. Wu and D. Huang, “Comparison of heat transfer characteristics of aviation kerosene flowing in smooth and enhanced mini tubes at supercritical pressures,” Int. J. Num. Meth. HFF, vol. 26, no. 3/4, pp. 1289–1308, 2016. DOI: 10.1108/HFF-12-2015-0538.
  • X. Li, J. Qin, S. Zhang, N. Cui and W. Bao, “Effects of micro-ribs on the thermal behavior of transcritical n-Decane in asymmetric heated rectangular mini-channels under near critical pressure,” J. Heat Transfer, vol. 140, no. 12, pp. 122402, 2018. DOI: 10.1115/1.4041049.
  • Z. Liu, H. Zhang, C. Wang and Z. Mao, “Numerical simulation for rib and channel position effect on PEMFC performances,” Int. J. Hydrogen Energy, vol. 35, no. 7, pp. 2802–2806, 2010. DOI: 10.1016/j.ijhydene.2009.05.020.
  • L. Battisti and P. Baggio, “Experimental determination of average turbulent heat transfer and friction factor in stator internal rib-roughened cooling channels,” Ann. N. Y. Acad. Sci., vol. 934, no. 1, pp. 464–472, 2001. DOI: 10.1111/j.1749-6632.2001.tb05884.x.
  • Y. Dai, J. C. Tyacke and P. G. Tucker, “Rib shape effects on heat transfer performance in internal cooling passages,” 53rd AIAA Aerospace Sciences Meeting, 2015. DOI: 10.2514/6.2015-0351.
  • K. Hermanson, S. Parneix, J. Wolfersdorf and K. Semmler, “Prediction of pressure loss and heat transfer in internal cooling passages,” Ann. N. Y. Acad. Sci., vol. 934, no. 1, pp. 448–455, 2006. DOI: 10.1111/j.1749-6632.2001.tb05882.x.
  • D. Gupta, S. C. Solanki and J. S. Saini, “Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates,” Sol. Energy, vol. 51, no. 1, pp. 31–37, 1993. DOI: 10.1016/0038-092X(93)90039-Q.
  • M. M. Sahu and J. L. Bhagoria, “Augmentation of heat transfer coefficient by using 90 broken transverse ribs on absorber plate of solar air heater,” Renew. Energy, vol. 30, no. 13, pp. 2057–2073, 2005. DOI: 10.1016/j.renene.2004.10.016.
  • K. R. Aharwal, B. K. Gandhi and J. S. Saini, “Experimental investigation on heat-transfer en-hancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater,” Renew. Energy, vol. 33, no. 4, pp. 585–596, 2008. DOI: 10.1016/j.renene.2007.03.023.
  • R. P. Saini and J. Verma, “Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters,” Energy, vol. 33, no. 8, pp. 1277–1287, 2008. DOI: 10.1016/j.energy.2008.02.017.
  • R. P. Saini and J. S. Saini, “Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element,” Int. J. Heat Mass Transf., vol. 40, no. 4, pp. 973–986, 1997. DOI: 10.1016/0017-9310(96)00019-1.
  • N. K. Pandey and V. K. Bajpai, “Experimental investigation of heat transfer augmentation using multiple arcs with gap on absorber plate of solar air heater,” Sol. Energy, vol. 134, pp. 314–326, 2016. DOI: 10.1016/j.solener.2016.05.007.
  • V. S. Hans, R. S. Gill and S. Singh, “Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with broken are ribs,” Exp. Therm. Pluid Sci., vol. 80, pp. 77–89, 2017. DOI: 10.1016/j.expthermflusci.2016.07.022.
  • A. Lanjewar, J. I. Bhagoria and R. M. Sarviya, “Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate,” Energy, vol. 36, no. 7, pp. 4531–4541, 2011. DOI: 10.1016/j.energy.2011.03.054.
  • A. Lanjewar, J. L. Bhagoria and R. M. Sarviya, “Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-Rib roughness,” Exp. Therm. Fluid Sci., vol. 35, no. 6, pp. 986–995, 2011. DOI: 10.1016/j.expthermflusci.2011.01.019.
  • S. Singh, S. Chander and J. S. Saini, “Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs,” Energy, vol. 36, no. 8, pp. 5053–5064, 2011. DOI: 10.1016/j.energy.2011.05.052.
  • S. Singh, S. Chander and J. S. Saini, “Thermo-hydraulic performance due to relative roughness pitch in V-down rib with gap in solar air heater duct-comparison with similar rib roughness geometries,” Renew. Sustain. Energy Rev., vol. 43, pp. 1159–1166, 2015. DOI: 10.1016/j.rser.2014.11.087.
  • I. Singh and S. Singh, “A review of artificial roughness geometries employed in solar air heaters,” Renew. Sustain. Energy Rev., vol. 92, pp. 405–425, 2018. DOI: 10.1016/j.rser.2018.04.108.
  • H.-M. Kim, M.-A. Moon and K.-Y. Kim, “Multi-objective optimization of a cooling channel with staggered elliptic dimples,” Energy, vol. 36, no. 5, pp. 3419–3428, 2011. DOI: 10.1016/j.energy.2011.03.043.
  • M.-A. Moon, A. Husain and K.-Y. Kim, “Multi-objective optimization of a rotating cooling channel with staggered pin-fins for heat transfer augmentation,” Int. J. Numer. Meth. Fluids, vol. 68, no. 7, pp. 922–938, 2012. DOI: 10.1002/fld.2590.
  • J.-W. Seo, A. Afzal and K.-Y. Kim, “Efficient multi-objective optimization of a boot-shaped rib in a cooling channel,” Int. J. Therm. Sci., vol. 106, pp. 122–133, 2016. DOI: 10.1016/j.ijthermalsci.2016.03.015.
  • N. Papila, W. Shyy, L. Griffin and D. Dorney, “Shape optimization of supersonic turbines using response surface and neural network methods,” 39th Aerospace Sciences Meeting and Exhibit, 2001. DOI: 10.2514/6.2001-1065.
  • A. Samad, K.-Y. Kim, T. Goel, R. T. Haftka and W. Shyy, “Multiple surrogate modeling for axial compressor blade shape optimization,” J. Propuls. Power, vol. 24, no. 2, pp. 301–310, 2008. DOI: 10.2514/1.28999.
  • A. Samad, K. D. Lee and K. Y. Kim, “Multi-objective optimization of a dimpled channel for heat transfer augmentation,” Heat Mass Transfer, vol. 45, no. 2, pp. 207–217, 2008. DOI: 10.1007/s00231-008-0420-6.
  • M. D. Damavandi, H. Safikhani and M. Yahyaabadi, “Multi-objective optimization of asymmetric v-shaped ribs in a cooling channel using CFD, artificial neural networks and genetic algorithms,” J. Braz. Soc. Mech. Sci. Eng., vol. 39, no. 6, pp. 2319–2329, 2017. DOI: 10.1007/s40430-016-0698-0.
  • Y. Zhu, B. Liu and P. Jiang, “Experimental and numerical investigations on n-decane thermal cracking at supercritical pressures in a vertical tube,” Energy Fuels, vol. 28, no. 1, pp. 466–474, 2014. DOI: 10.1021/ef401924s.
  • M. Rahimi, R. Beigzadeh, M. Parvizi and S. Eiamsa-Ard, “GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles,” Heat Mass Transfer, vol. 52, no. 8, pp. 1585–1593, 2016. DOI: 10.1007/s00231-015-1681-5.
  • K.-T. Chiang, “Modeling and optimization of designing parameters for a parallel-plain fin heat sink with confined impinging jet using the response surface methodology,” Appl. Therm. Eng., vol. 27, no. 14–15, pp. 2473–2482, 2007. DOI: 10.1016/j.applthermaleng.2007.02.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.