Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 1
1,159
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Vortical structures and heat transfer augmentation of a cooling channel in a gas turbine blade with various arrangements of tip bleed holes

, , , , &
Pages 40-67 | Received 29 Jul 2020, Accepted 20 Aug 2020, Published online: 10 Sep 2020

References

  • Mitsubishi. “Mitsubishi’s R1 turbine blade for the W501FD2 on track to run 72,000 hours” [Online]. Available: http://www.ccj-online.com/mitsubishis-r1-turbine-blade-for-the-w501fd2-on-track-to-run-72,000-hours/. Accessed: Jun. 16, 2020.
  • A. J. Saul et al., “An experimental investigation of adiabatic film cooling effectiveness and heat transfer coefficient on a transonic squealer tip,” ASME J. Turbomach, vol. 141, no. 9, pp. 091005, Sep. 2019. DOI: 10.1115/1.4043263.
  • H. Wang, Z. Tao, and H. Li, “A tip region film cooling study of the fan-shaped hole using PSP,” Int. J. Heat Mass Transf., vol. 153, pp. 119378, Jun. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119378.
  • F. N. Cheng, J. Z. Zhang, H. P. Chang, and J. Y. Zhang, “Investigations of film-cooling effectiveness on the squealer tip with various film-hole configurations in a linear cascade,” Int. J. Heat Mass Transf., vol. 117, pp. 344–357, Feb. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.100.
  • M. Wilhelm and H. P. Schiffer, “Experimental investigation of rotor tip film cooling at an axial turbine with swirling inflow using pressure sensitive paint,” IJTPP, vol. 4, no. 3, pp. 23, Aug. 2019. DOI: 10.3390/ijtpp4030023.
  • J. S. Kwak and J. C. Han, “Heat transfer coefficient and film-cooling effectiveness on a gas turbine blade tip,” ASME Turbo Expo, vol. 3, pp. 309–318, June 2002. DOI: 10.1115/GT2002-30194.
  • M. Böttger, M. Lange, R. Mailach, and K. Vogeler, “Experimental study on the influence of the streamwise position of film hole extraction in internal ribbed cooling channels of turbine blades,” J. Glob. Power Propuls. Soc., vol. 3, pp. 580–591, Jan. 2019. DOI: 10.33737/gpps19-tc-019.
  • A. Andreini, G. Caciolli, R. Da Soghe, B. Facchini, and L. Mazzei. “Numerical investigation on the heat transfer enhancement due to coolant extraction on the cold side of film cooling holes,” ASME Turbo Expo, vol. 5B, pp. V05BT14A004, Jun. 2014. DOI: 10.1115/GT2014-25460.
  • G. Scheepers and R. M. Morris, “Experimental study of heat transfer augmentation near the entrance to a film cooling hole in a turbine blade cooling passage,” ASME J. Turbomach, vol. 131, no. 4, pp. 044501, Oct. 2009. DOI: 10.1115/1.3066294.
  • B. Cukurel, C. Selcan, and T. Arts, “Film cooling extraction effects on the aero-thermal characteristics of rib roughened cooling channel flow,” ASME J. Turbomach, vol. 135, no. 2, pp. 21016, Mar. 2013. DOI: 10.1115/1.4007501.
  • Z. Shen, H. Qu, D. Zhang, and Y. Xie, “Effect of bleed hole on flow and heat transfer performance of u-shaped channel with dimple structure,” Int. J. Heat Mass Transf., vol. 66, pp. 10–22, Nov. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.008.
  • L. Luo et al., “On the heat transfer and flow structures’ characteristics of the turbine blade tip underside with dirt purge holes at different locations by using topological analysis,” ASME J. Turbomach, vol. 141, no. 7, pp. 071004, Jul. 2019. DOI: 10.1115/1.4042654.
  • Z. Zhao, L. Luo, X. Zhou, and S. Wang, “Effect of coolant mass flow rate of dirt purge hole on heat transfer and flow characteristics at a turbine blade tip underside,” ASME Turbo Expo, vol. 5A, pp. V05AT11A009, Jun. 2018. DOI: 10.1115/GT2018-76156.
  • Z. Zhao, L. Luo, L. X. Kan, D. Qiu, and X. Zhou, “Numerical investigation of rotation effects on the flow and heat transfer on the turbine blade tip underside with bleed hole at different locations,” ASME Turbo Expo, vol. 5A, pp. V05AT11A009, Jun. 2019. DOI: 10.1115/GT2019-90789.
  • R. S. Bunker, “The augmentation of internal blade tip-cap cooling by arrays of shaped pins,” J. Turbomach, vol. 130, no. 4, pp. 041007, Oct. 2008. DOI: 10.1115/1.2812333.
  • E. E. Halila, D. T. Lenahan, and T. T. Thomas, “Energy efficient engine high pressure turbine test hardware detailed design report,” NASA Lewis Research Centre, Cleveland, Ohio, NASA-CR-167955, 1982.
  • B. Sundén, Introduction to Heat Transfer. Southampton, UK: WIT Press, 2012.
  • G. Haller, “An objective definition of a vortex,” J. Fluid Mech., vol. 525, pp. 1–26, Feb. 2005. DOI: 10.1017/S0022112004002526.
  • ANSYS ICEM CFD, version 19.0. Canonsburg, PA: ANSYS, Inc., Nov., 2018.
  • ANSYS Fluent, version 19.0. Canonsburg, PA: ANSYS, Inc., Nov., 2018.
  • L. Luo et al., “Computational investigation of the dust hole effect on the heat transfer and friction factor characteristics in a u bend channel,” Appl. Therm. Eng., vol. 140, pp. 166–179, Jul. 2018. DOI: 10.1016/j.applthermaleng.2018.05.031.
  • G. Xie and B. Sundén, “Conjugated analysis of heat transfer enhancement of an internal blade tip-wall with pin-fin arrays,” J. Enhanc. Heat Transf, vol. 18, no. 2, pp. 149–165, 2011. DOI: 10.1615/JEnhHeatTransf.v18.i2.60.
  • H. Poincaré, “Les points singuliers des équations différential,” C. R. Acad. Sci. Paris, vol. 94, pp. 416–418, 1882.
  • R. Legendre, “Séparation de l’écoulement laminaire tridimensionnel,” La Rech. Aéronaut., vol. 54, pp. 3–8, 1956.
  • M. Tobak and D. J. Peake, “Topology of three-dimensional separated flows,” Annu. Rev. Fluid Mech., vol. 14, no. 1, pp. 61–85, Jan. 1982. DOI: 10.1146/annurev.fl.14.010182.000425.
  • E. H. Hirschel, J. Cousteix, and W. Kordulla, Three-Dimensional Attached Viscous Flow. Berlin, DE: Springer, 2014.
  • H. Zhang, S. Wang, and Z. Wang, “Variation of vortex structure in a compressor cascade at different incidences,” J. Propul. Power, vol. 23, no. 1, pp. 221–226, Jan. 2007. DOI: 10.2514/1.17245.
  • S. A. Gbadebo, N. A. Cumpsty, and T. P. Hynes, “Three-dimensional separations in axial compressors,” ASME J. Turbomach., vol. 127, no. 2, pp. 331–339, Apr. 2005. DOI: 10.1115/1.1811093.
  • X. Kan, H. Lu, and J. Zhong, “Topological characterization of vortex structures on a transonic compressor stator during the stalling process,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 230, no. 3, pp. 566–580, Dec. 2016. DOI: 10.1177/0954410015622493.
  • J. M. Délery, “Robert Legendre and Henri Werlé: Toward the elucidation of three-dimensional separation,” Annu. Rev. Fluid Mech., vol. 33, no. 1, pp. 129–154, Jan. 2001. DOI: 10.1146/annurev.fluid.33.1.129.
  • R. L. Webb and N. H. Kim, Principle of Enhanced Heat Transfer. New York: Taylor Francis, 1994.
  • G. Xie, B. Sundén, L. Wang, and E. Utriainen, “Enhanced internal heat transfer on the tip-wall in a rectangular two-pass channel (AR = 1: 2) by Pin-fin Arrays,” Numer. Heat Transfer, Part A, vol. 55, no. 8, pp. 739–761, Dec. 2009. DOI: 10.1080/10407780902864680.
  • G. Xie, B. Sundén, E. Utriainen, and L. Wang, “Computational analysis of pin-fin arrays effects on internal heat transfer enhancement of a blade tip wall,” ASME J. Heat Transfer, vol. 132, pp. 031901, Mar 2010. DOI: 10.1115/1.4000053.
  • S. Cimina, C. Wang, L. Wang, A. Niro, and B. Sundén, “Experimental study of pressure drop and heat transfer in a u-bend channel with various guide vanes and ribs,” J. Enhanc. Heat Transf., vol. 22, no. 1, pp. 29–45, Jan. 2015. DOI: 10.1615/JEnhHeatTransf.2015013382.
  • G. N. Xie and B. Sundén, “Numerical predictions of augmented heat transfer of an internal blade tip-wall by hemispherical dimples,” Int. J. Heat Mass Transf., vol. 53, no. 25–26, pp. 5639–5650, Dec. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.08.019.
  • G. N. Xie, B. Sundén, and Q. Wang, “Predictions of enhanced heat transfer of an internal blade tip-wall with hemispherical dimples or protrusions,” ASME J. Turbomach., vol. 133, no. 4, pp. 041005, Oct. 2011. DOI: 0.1115/1.4002963.