Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 2
230
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Heat transfer enhancement in radiative peristaltic propulsion of nanofluid in the presence of induced magnetic field

ORCID Icon & ORCID Icon
Pages 83-110 | Received 28 Aug 2020, Accepted 07 Oct 2020, Published online: 26 Oct 2020

References

  • R. Skalak, S. R. Keller and T. W. Secomb, “Mechanics of blood flow,” J. Biomech. Eng., vol. 103, no. 2, pp. 102–115, 1981. DOI: 10.1115/1.3138253.
  • J. C. Misra, M. K. Patra, and S. C. Misra, “A non-Newtonian fluid model for blood flow through arteries under stenotic conditions,” J. Biomech., vol. 26, no. 9, pp. 1129–1141, 1993. DOI: 10.1016/S0021-9290(05)80011-9.
  • M. Sugawara, 1987, “Blood flow in the heart and large vessels,” in Medical Progress through Technology. Dordrecht: Springer, pp. 65–76.
  • R. Ellahi, A. Zeeshan, F. Hussain, and A. Asadollahi, “Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy,” Symmetry, vol. 11, no. 2, pp. 276, 2019. DOI: 10.3390/sym11020276.
  • S. S. Ardahaie, A. J. Amiri, A. Amouei, K. Hosseinzadeh, and D. D. Ganji, “Investigating the effect of adding nanoparticles to the blood flow in presence of magnetic field in a porous blood arterial,” Inform. Med. Unlocked, vol. 10, pp. 71–81, 2018. DOI: 10.1016/j.imu.2017.10.007.
  • H. Ye, Z. Shen, L. Yu, M. Wei, and Y. Li, “Manipulating nanoparticle transport within blood flow through external forces: An exemplar of mechanics in nanomedicine,” Proc. R. Soc. A, vol. 474, no. 2211, pp. 20170845, 2018. DOI: 10.1098/rspa.2017.0845.
  • G. Fullstone, J. Wood, M. Holcombe, and G. Battaglia, “Modelling the transport of nanoparticles under blood flow using an agent-based approach,” Sci. Rep., vol. 5, pp. 10649, 2015. DOI: 10.1038/srep10649.
  • S. Noreen, M. M. Rashidi, and M. Qasim, “Blood flow analysis with considering nanofluid effects in vertical channel,” Appl. Nanosci., vol. 7, no. 5, pp. 193–199, 2017. DOI: 10.1007/s13204-017-0564-0.
  • K. S. Mekheimer, W. M. Hasona, R. E. Abo-Elkhair, and A. Z. Zaher, “Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy,” Phys. Lett. A, vol. 382, no. 23, pp. 85–93, 2018. DOI: 10.1016/j.physleta.2017.10.042.
  • T. Elnaqeeb, N. A. Shah, and K. S. Mekheimer, “Hemodynamic characteristics of gold nanoparticle blood flow through a tapered stenosed vessel with variable nanofluid viscosity,” BioNanoSci., vol. 9, no. 2, pp. 245–255, 2019. DOI: 10.1007/s12668-018-0593-5.
  • M. Haghdel, R. Kamali, A. Haghdel, and Z. Mansoori, “Effects of non-newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery,” Nanomed. J., vol. 4, no. 2, pp. 89–97, 2017. DOI: 10.22038/nmj.2017.8410.
  • S. E. Ghasemi, M. Hatami, A. K. Sarokolaie, and D. D. Ganji, “Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods,” Physica E: Low-Dimensional Syst. Nanostr., vol. 70, pp. 146–156, 2015. DOI: 10.1016/j.physe.2015.03.002.
  • M. Usman, S. T. Mohyud Din, T. Zubair, M. Hamid, and W. Wang, “Fluid flow and heat transfer investigation of blood with nanoparticles through porous vessels in the presence of magnetic field,” J. Algor. Comput. Technol., vol. 13, pp. 1–15, 2018. DOI: 10.1177/1748301818788661.
  • N. S. Akbar, “Metallic nanoparticles analysis for the blood flow in tapered stenosed arteries: Application in nanomedicines,” Int. J. Biomath., vol. 09, no. 01, pp. 1650002, 2016. DOI: 10.1142/S1793524516500029.
  • I. I. Lungu, A. M. Grumezescu, A. Volceanov, and E. Andronescu, “Nanobiomaterials used in cancer therapy: An up-to-date overview,” Molecules, vol. 24, no. 19, pp. 3547, 2019. DOI: 10.3390/molecules24193547.
  • S. Soni and R. K. Sinha, “ Tumor blood perfusion-based requirement of nanoparticle dose-loadings for plasmonic photothermal therapy,” Nanomedicine (Lond), vol. 14, no. 14, pp. 1841–1855, 2019. DOI: 10.2217/nnm-2018-0494.
  • J. K. Tee, et al., “ Nanoparticles' interactions with vasculature in diseases,” Chem. Soc. Rev., vol. 48, no. 21, pp. 5381–5407, 2019. DOI: 10.1039/c9cs00309f.
  • P. Dogra, et al., “Mathematical modeling in cancer nanomedicine: A review,” Biomed. Microdev., vol. 21, no. 2, pp. 40, 2019., DOI: 10.1007/s10544-019-0380-2.
  • J. W. Nichols and Y. H. Bae, “Odyssey of a cancer nanoparticle: from injection site to site of action,” Nano Today, vol. 7, no. 6, pp. 606–618, 2012. DOI: 10.1016/j.nantod.2012.10.010.
  • A. J. Giustini, A. A. Petryk, S. M. Cassim, J. A. Tate, I. Baker, and P. J. Hoopes, “Magnetic nanoparticle hyperthermia in cancer treatment,” Nano Life, vol. 01, no. 0102, pp. 17–32, 2010. DOI: 10.1142/S1793984410000067.
  • D. Chang, et al., “Biologically targeted magnetic hyperthermia: Potential and limitations,” Front Pharmacol., vol. 9, pp. 831, 2018. DOI: 10.3389/fphar.2018.00831.
  • S. I. Abdelsalam and M. M. Bhatti, “New insight into AuNP applications in tumour treatment and cosmetics through wavy annuli at the nanoscale,” Sci. Rep., vol. 9, no. 1, pp. 260, 2019. DOI: 10.1038/s41598-018-36459-0.
  • S. Spirou, M. Basini, A. Lascialfari, C. Sangregorio, and C. Innocenti, “Magnetic hyperthermia and radiation therapy: Radiobiological principles and current practice,” Nanomaterials, vol. 8, no. 6, pp. 401, 2018. DOI: 10.3390/nano8060401.
  • P. Koumoutsakos, I. Pivkin, and F. Milde, “The fluid mechanics of cancer and its therapy,” Annu. Rev. Fluid Mech., vol. 45, no. 1, pp. 325–355, 2013. DOI: 10.1146/annurev-fluid-120710-101102.
  • D. K. Chatterjee, et al., “Convergence of nanotechnology with radiation therapy-insights and implications for clinical translation,” Transl. Cancer Res., vol. 2, no. 4, pp. 256–268, 2013. DOI: 10.3978/j.issn.2218-676X.2013.08.10.
  • M. K. Manshadi, et al., “Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy,” Drug Deliv., vol. 25, no. 1, pp. 1963–1973, 2018. DOI: 10.1080/10717544.2018.1497106.
  • C. P. Gooneratne, A. Kurnicki, S. Yamada, S. C. Mukhopadhyay, and J. Kosel, “Analysis of the distribution of magnetic fluid inside tumors by a giant magnetoresistance probe,” PloS One, vol. 8, no. 11, pp. e81227, 2013. DOI: 10.1371/journal.pone.0081227.
  • G. Kong, R. D. Braun, and M. W. Dewhirst, “Characterization of the effect of hyperthermia on nanoparticle extravasation from tumour vasculature,” Cancer Res., vol. 61, no. 7, pp. 3027–3032, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.