Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 2
2,458
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A high temperature turbine blade heat transfer multilevel design platform

, , , , & ORCID Icon
Pages 122-145 | Received 30 Aug 2020, Accepted 07 Oct 2020, Published online: 28 Oct 2020

References

  • R. S. Bunker, “A review of shaped hole turbine film-cooling technology,” J. Heat Transf., vol. 127, no. 4, pp. 441–453, Apr. 2005. DOI: 10.1115/1.1860562.
  • D. G. Bogard and K. A. Thole, “Gas turbine film cooling,” J. Propul. Power, vol. 22, no. 2, pp. 249–269, 2006. DOI: 10.2514/1.18034.
  • N. Hay and D. Lampard, “Discharge coefficient of turbine cooling holes: A review,” J. Turbomach., vol. 120, no. 2, pp. 314–319, 1998. DOI: 10.1115/1.2841408.
  • J. C. Han, S. Dutta, and S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology. Boca Raton, FL, USA: Taylor & Francis Group, 2012.
  • G. J. Korotky and M. E. Taslim, “Rib heat transfer coefficient measurements in a rib-roughened square passage,” Proceedings of the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration, Birmingham, UK, Jun. 1996. DOI: 10.1115/96-GT-356.
  • J. C. Han, Y. M. Zhang, and C. P. Lee, “Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs,” J. Heat Transf., vol. 113, no. 3, pp. 590–596, 1991. DOI: 10.1115/1.2910606.
  • Y. Li, H. Deng, G. Xu, and S. Tian, “Heat transfer and pressure drop in a rotating two-pass square channel with different ribs at high rotation numbers,” Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, ASME Paper GT2015-44019, Montreal, Quebec, Canada, Jun. 2015. DOI: 10.1115/GT2015-44019.
  • J. Armstrong and D. Winstanley, “A review of staggered array pin fin heat transfer for turbine cooling applications,” J. Turbomach., vol. 110, no. 1, pp. 94–103, Jan. 1988. DOI: 10.1115/1.3262173.
  • D. E. Metzger, C. S. Fan, and S. W. Haley, “Effects of pin shape and array orientation on heat transfer and pressure loss in pin fin arrays,” J. Eng. Gas Turbines Power, vol. 106, no. 1, pp. 252–257, Jan. 1984. DOI: 10.1115/1.3239545.
  • L. M. Wright, E. Lee, and J. C. Han, “Effect of rotation on heat transfer in rectangular channels with pin-fins,” J. Thermophys. Heat Transf., vol. 18, no. 2, pp. 263–272, Apr. 2004. DOI: 10.2514/1.4723.
  • P. Li and K. Y. Kim, “Multiobjective optimization of staggered elliptical pin-Fin arrays,” Numer. Heat Transf. A: Appl., vol. 53, no. 4, pp. 418–431, 2008. DOI: 10.1080/10407780701632759.
  • L. Luo, Y. F. Zhang, C. L. Wang, S. T. Wang, and B. Sundén, “On the heat transfer characteristics of a Lamilloy cooling structure with curvatures with different pin fins configurations,” Int. J. Numer. Methods Heat Fluid Flow, 2020.
  • L. Luo, C. L. Wang, L. Wang, B. Sundén, and S. T. Wang, “Heat transfer and friction factor performance in a pin fin wedge duct with different dimple arrangements,” Numer. Heat Transf. A: Appl., vol. 69, no. 2, pp. 209–226, Nov. 2016. DOI: 10.1080/10407782.2015.1052301.
  • L. Luo et al., “Surface temperature reduction by using dimples/protrusions in a realistic turbine blade trailing edge,” Numer. Heat Transf. A: Appl., vol. 74, no. 5, pp. 1265–1283, 2018. DOI: 10.1080/10407782.2018.1515333.
  • M. E. Taslim and A. Nongsaeng, “Experimental and numerical cross-over jet impingement in an airfoil trailing-edge cooling channel,” J. Turbomach., vol. 133, no. 4, Oct. 2011. DOI: 10.1115/1.4002984.
  • P. Martini, A. Schulz, and S. Wittig, “Experimental and numerical investigation of trailing edge film cooling by circular coolant wall jets ejected from a slot with internal rib arrays,” J. Turbomach., vol. 126, no. 2, pp. 229–236, Apr. 2004. DOI: 10.1115/1.1645531.
  • J. Wang, J. Liu, L. Wang, B. Sundén, and S. Wang, “Conjugated heat transfer investigation with racetrack-shaped jet hole and double swirling chamber in rotating jet impingement,” Numer. Heat Transf. A: Appl., vol. 73, no. 11, pp. 768–787, 2018. DOI: 10.1080/10407782.2018.1454753.
  • K. Singh, R. Das, and B. Kundu, “Approximate analytical method for porous stepped fins with temperature-dependent heat transfer parameters,” J. Thermophys. Heat Transf., vol. 30, no. 3, pp. 661–672, May 2016. DOI: 10.2514/1.T4831.
  • R. Das and B. Kundu, “Prediction of heat generation in a porous fin from surface temperature,” J. Thermophys. Heat Transf., vol. 31, no. 4, pp. 781–790, Feb. 2017. DOI: 10.2514/1.T5098.
  • W. P. Damerow, J. C. Murtaugh, and F. Burgraf, “Experimental and analytical investigation of the coolant flow characteristics in cooled turbine airfoils,” NASA Technical Paper, NASA-CR-120883, 1972.
  • P. L. Meitner, “Computer code for predicting coolant flow and heat transfer in turbomachinery,” NASA Technical Paper 2985, AVSCOM Technical Paper 89-C-008, 1990.
  • C. Carcasci and B. Facchini, “A numerical procedure to design internal cooling of gas turbine stator blades,” Rev. Gen. Therm., vol. 35, no. 412, pp. 257–268, 1996. DOI: 10.1016/S0035-3159(96)80018-3.
  • G. H. Kumar, R. J. Richard, and P. L. Meitner, “A generalized one dimensional computer code for turbomachinery cooling passage flow calculations,” presented at the 25th Joint Propulsion Conference, AIAA: Monterey, California, USA, Jul. 1989. DOI: 10.2514/6.1989-2574.
  • A. Majumdar, J. W. Bailey, P. Schallhorn, and T. Steadman, “A generalized fluid system simulation program to model flow distribution in fluid networks,” presented at the 33rd Joint Propulsion Conference and Exhibit, Sverdrup Technology Report No. 331-201-97-005, AIAA: Cleveland, Ohio, USA, Jul. 1997. DOI: 10.2514/6.1997-3225.
  • K. J. Kutz and T. M. Speer, “Simulation of the secondary air system of aero engines,” Proceedings of the ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. Volume 1: Turbomachinery, ASME: Cologne, Germany, Jun. 1992. DOI: 10.1115/92-GT-068.
  • S. S. Talya, A. Chattopadhyay, and J. N. Rajadas, “An integrated multidisciplinary design optimization procedure for cooled gas turbine blades,” presented at the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, AIAA Paper 2000-1664, Apr. 2000. DOI: 10.2514/6.2000-1664.
  • S. S. Talya, A. Chattopadhyay, and J. N. Rajadas, “Multidisciplinary design optimization procedure for improved design of a cooled gas turbine blade,” Eng. Optimiz., vol. 34, no. 2, pp. 175–194, 2002. DOI: 10.1080/03052150210917.
  • N. Jelisavcic et al., “Design optimization of networks of cooling passages,” ASME 2005 International Mechanical Engineering Congress and Exposition. Heat Transfer, Part B, Orlando, Florida, USA, Nov. 2005, pp. 399–410. DOI: 10.1115/IMECE2005-79175.
  • T. J. Martin and G. S. Dulikravich, “Analysis and multidisciplinary optimization of internal coolant networks in turbine blades,” J. Propul. Power, vol. 18, no. 4, pp. 896–906, 2002. DOI: 10.2514/2.6015.
  • K. H. Yu, Z. F. Yue, and J. Wang, “Parametric modeling and multidisciplinary design optimization of 3-d internally cooled turbine blades,” presented at the 7th AIAA Aviation Technology, Integration and Operations Conference, Sep. 2007. AIAA Paper 2007-7719. DOI: 10.2514/6.2007-7719.
  • V. K. Kostege, V. A. Halturin, and V. G. Sundurin, Simulation of Multidisciplinary Problems for the Thermostress State of Cooled High Temperature Turbines. AGARD Lecture Series TCP 02/LS198: Math. Models Gas Turbine Engines Their Components, London, UK, 1994.
  • H. F. Jen and J. B. Sobanik, “Cooling air flow characteristics in gas turbine components,” J. Eng. Gas Turbine Power, vol. 104, no. 2, pp. 275–280, 1982. DOI: 10.1115/1.3227276.
  • G. N. Kumar, R. J. Roelky, and P. L. Meiner, “A generalized one dimensional computer code for turbomachinery cooling passage flow calculations,” presented at the 25th Joint Propulsion Conference, AIAA Paper 89-2574, Reston, VA, USA, Jul. 1989. DOI: 10.2514/6.1989-2574.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Glasgow, UK: Pearson Education, 2007.
  • L. Luo, B. Sundén, and S. T. Wang, “Optimization of the blade profile and cooling structure in a gas turbine stage considering both aerodynamics and heat transfer,” Heat Transf. Res., vol. 46, no. 7, pp. 599–629, 2015. DOI: 10.1615/HeatTransRes.2015012370.
  • L. Luo, C. Wang, L. Wang, B. Sundén, and S. T. Wang, “Endwall heat transfer and aerodynamic performance of bowed outlet guide vanes (OGVs) with on- and off-design conditions,” Numer. Heat Transf. A: Appl., vol. 69, no. 4, pp. 352–368, Nov. 2016. DOI: 10.1080/10407782.2015.1081021.
  • L. Luo, C. Wang, L. Wang, B. Sundén, and S. T. Wang, “Computational investigation of dimple effects on heat transfer and friction factor in a Lamilloy cooling structure,” J Enhanc. Heat Transf., vol. 22, no. 2, pp. 147–175, 2015. DOI: 10.1615/JEnhHeatTransf.2015013956.
  • W.-T. Su, M. Binama, Y. Li, and Y. Zhao, “Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution,” Renew. Energy, vol. 162, pp. 550–560, Jul. 2020. DOI: 10.1016/j.renene.2020.08.057.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • L. D. Hylton, M. S. Milhec, E. R. Turner, D. A. Nealy, and R. E. York, “Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes,” NASA-CR-168015, Cleveland, OH, USA, May 1983.