Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 3
356
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Multi-optimization of a specific laminated cooling structure for overall cooling effectiveness and pressure drop

, , &
Pages 195-221 | Received 31 Aug 2020, Accepted 07 Oct 2020, Published online: 28 Oct 2020

References

  • R. S. Bunker, “Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges,” ASME J. Turbomach., vol. 129, no. 2, pp. 193–210, 2007. DOI: 10.1115/1.2464142.
  • J. C. Han and M. Huh, “Recent Studies in Turbine Blade Internal Cooling,” Heat Trans. Res., vol. 41, no. 8, pp. 803–828, 2010. DOI: 10.1615/HeatTransRes.v41.i8.30.
  • P. Ligrani, “Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines,” Int. J. Rotat. Mach., vol. 2013, pp. 1–32, 2013. DOI: 10.1155/2013/275653.
  • M. K. Chyu and S. C. Siw, “Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils,” J. Therm. Sci. Eng. Appl., vol. 5, pp. 21008, 2013.
  • G. M. Carlomagno and A. Ianiro, “Thermo-Fluid-Dynamics of Submerged Jets Impinging at Short Nozzle-to-Plate Distance: A review,” Exp. Therm. Fluid Sci., vol. 58, pp. 15–35, 2014. DOI: 10.1016/j.expthermflusci.2014.06.010.
  • R. S. Bunker, “A Review of Turbine Shaped Film Cooling Technology,” ASME J. Heat Transfer, vol. 127, no. 4, pp. 441–453, 2005. DOI: 10.1115/1.1860562.
  • R. S. Bunker, “Film Cooling: Breaking the Limits of Diffused Shaped Holes,” Heat Trans. Res., vol. 41, no. 6, pp. 627–650, 2010. DOI: 10.1615/HeatTransRes.v41.i6.40.
  • S. Acharya and Y. Kanani, “Advances in Film Cooling Heat Transfer,” Adv. Heat Transfer, vol. 49, pp. 91–156, 2017.
  • G. Cerri, A. Giovannelli, L. Battisti and R. Fedrizzi, “Advances in Effusive Cooling Techniques of Gas Turbines,” Appl. Therm. Eng., vol. 27, no. 4, pp. 692–698, 2007. DOI: 10.1016/j.applthermaleng.2006.10.012.
  • R. Krewinkel, “A Review of Gas Turbine Effusion Cooling Studies,” Int. J. Heat Mass Transfer, vol. 66, pp. 706–722, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.071.
  • J. J. Scrittore, K. A. Thole and S. W. Burd, “Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner,” ASME J. Turbomach, vol. 129, no. 3, pp. 518–526, 2007. DOI: 10.1115/1.2720492.
  • F. Bazdidi-Therani and G. Andrews, “Full Coverage Discrete Hole Film Cooling: Investigation of the Effect of Variable Density Ratio,” J. Eng. Gas Turbines Power, vol. 116, no. 3, pp. 587–596, 1994. DOI: 10.1115/1.2906860.
  • M. K. Harrington, M. A. McWaters, D. G. Bogard, et al., “Full-coverage film cooling with short normal injection holes,” ASME J. Turbomach., vol. 123, no. 4, pp. 798–806, 2001. DOI: 10.1115/1.1400111.
  • B. Petre, E. Dorignac and J. J. Vullierme, “Study of the Influence of the Number of Holes Rows on the Convective Heat Transfer in the Case of Full Coverage Film Cooling,” Int. J. Heat Mass Transfer, vol. 46, no. 18, pp. 3477–3496, 2003. DOI: 10.1016/S0017-9310(03)00126-1.
  • C. F. Yang and J. Z. Zhang, “Influence of Multi-Hole Arrangement on Cooling Film Development,” Chin. J. Aeronaut., vol. 25, no. 2, pp. 182–188, 2012. DOI: 10.1016/S1000-9361(11)60377-4.
  • L. Tarchi, B. Facchini, F. Maiuolo and C. Daniele, “Experimental Investigation on the Effects of a Large Recirculating Area on the Performance of an Effusion Cooled Combustor Liner,” J. Eng. Gas Turbines Power, vol. 134, pp. 41505, 2012.
  • B. Wurm, A. Schulz, H.-J. Bauer and M. Gerendas, “Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner,” J. Eng. Gas Turbines Power, vol. 134, pp. 121503, 2012.
  • A. Andreini, et al., “Density Ratio Effects on the Cooling Performances of a Combustor Liner Cooled by a Combined Slot/Effusion System,” ASME Paper No. GT2012-68263, 2012. DOI: 10.1115/GT2012-68263.
  • A. Andreini, B. Facchini, R. Becchi, A. Picchi and F. Turrini, “Effect of Slot Injection and Effusion Array on the Liner Heat Transfer Coefficient of a Scaled Lean-Burn Combustor with Representative Swirling Flow,” J. Eng. Gas Turbines Power, vol. 138, pp. 41501, 2016.
  • L. H. Qu, J. Z. Zhang and X. M. Tan, “Improvement on Film Cooling Effectiveness by a Combined Slot-Effusion Scheme,” Appl. Therm. Eng., vol. 126, pp. 379–392, 2017. DOI: 10.1016/j.applthermaleng.2017.07.188.
  • R. Da Soghe, A. Andreini, B. Facchini and L. Mazzei, “Heat Transfer Enhancement due to Coolant Extraction on the Cold Side of Effusion Cooling Plates,” J. Eng. Gas Turbines Power, vol. 137, pp. 122609, 2015.
  • K. M. Kim, H. Moon, J. S. Park and H. H. Cho, “Optimal Design of Impinging Jets in an Impingement/Effusion Cooling System,” Energy, vol. 66, pp. 839–848, 2014. DOI: 10.1016/j.energy.2013.12.024.
  • X. M. Tan, J. Z. Zhang and H. S. Xu, “Experimental Investigation on Impingement/Effusion Cooling with Short Normal Injection Holes,” Int. Commun. Heat Mass Transfer, vol. 69, pp. 1–10, 2015.
  • P. Ligrani, Z. Ren, F. Liberatore, R. Patel, R. Srinivason and Y. H. Ho, “Double Wall Cooling of a Full-Coverage Effusion Plate, Including Internal Impingement Array Cooling,” J. Eng. Gas Turbines Power, vol. 140, pp. 51901, 2018.
  • D. Ritchie, A. Click, P. M. Ligrani, F. Liberatore, R. Patel and Y. H. Ho, “Double Wall Cooling of an Effusion Plate with Simultaneous Cross Flow and Impingement Jet Array Internal Cooling,” J. Eng. Gas Turbines Power, vol. 141, pp. 91008, 2019.
  • A. C. Shrager, K. A. Thole and D. Mongillo, “Effects of Effusion Cooling Pattern Near the Dilution Hole for a Double-Walled Combustor Liner-Part 1: Overall Effectiveness Measurements,” J. Eng. Gas Turbines Power, vol. 141, pp. 11022, 2019.
  • A. C. Shrager, K. A. Thole and D. Mongillo, “Effects of Effusion Cooling Pattern Near the Dilution Hole for a Double-Walled Combustor Liner-Part 2: Flowfield Measurements,” J. Eng. Gas Turbines Power, vol. 141, pp. 11023, 2019.
  • W. D. Li, X. F. Lu, X. F. Li and H. D. Jiang, “On Improving Full-Coverage Effusion Cooling Efficiency by Varying Cooling Arrangements and Wall Thickness in Double Wall Cooling Application,” Int. J. Heat Mass Transfer, vol. 141, pp. 42201, 2019.
  • D. A. Nealy and S. B. Relder, “Evaluation of Laminated Porous Wall Materials for Combustor Liner Cooling,” J. Eng. Gas Turbines Power, vol. 102, no. 2, pp. 268–276, 1980. DOI: 10.1115/1.3230247.
  • D. H. Rhee, J. H. Choi and H. H. Cho, “Local Heat/Mass Transfer with Various Rib Arrangements in Impingement/Effusion Cooling System with Crossflow,” ASME J. Turbomach., vol. 126, no. 4, pp. 615–626, 2004. DOI: 10.1115/1.1791287.
  • S. K. Hong, D. H. Rhee and H. H. Cho, “Heat/Mass Transfer with Circular Pin Fins in Impingement/Effusion Cooling with Crossflow,” J. Thermophy. Heat Transfer, vol. 20, no. 4, pp. 728–737, 2006. DOI: 10.2514/1.16864.
  • S. K. Hong, D. H. Rhee and H. H. Cho, “Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement/Effusion Cooling with Crossflow,” J. Heat Transfer, vol. 129, no. 12, pp. 1697–1707, 2007. DOI: 10.1115/1.2767727.
  • S. H. Kim, K. H. Ahn, E. Y. Jung, J. S. Park, K. Y. Huang and H. H. Cho, “Total Cooling Effectiveness on Laminated Multilayer for Impingement/Effusion Cooling System,” ASME Paper No. GT2014-26692, 2014. DOI: 10.1115/GT2014-26692.
  • S. H. Kim, K. H. Ahn, J. S. Park, E. Y. Jung, K.-Y. Hwang and H. H. Cho, “Local Heat and Mass Transfer Measurements for Multi-Layered Impingement/Effusion Cooling: Effects of Pin Spacing on the Impingement and Effusion Plate,” Int. J. Heat Mass Transfer, vol. 105, pp. 712–722, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.007.
  • J. H. Wang, X. J. Lv, Q. D. Liu and X. Y. Wu, “An Experimental Investigation on Cooling Performance of a Laminated Configuration using Infrared Thermal Image Technique,” ASME Paper No. GT2009-59838, 2009. DOI: 10.1115/GT2009-59838.
  • J. H. Wang, H. Z. Xu, X. J. Lv, Z. N. Du and S. J. Yang, “A Numerical Investigation on Fluid-Thermal-Structure Coupling Characteristics of Laminated Configurations,” ASME Paper No. GT2009-59604, 2009.
  • X. D. Zhang, J. J. Liu and B. T. An, “The Influences of Film Hole Size and Coolant Ejection Angle on Overall Cooling Effectiveness of Laminated Cooling,” ASME Paper No. GT2014-25615, 2014. DOI: 10.1115/GT2014-25615.
  • X. D. Zhang, J. J. Liu and B. T. An, “The Influences of Element Layout and Coolant Ejection Angle on Overall Cooling Effectiveness of Laminated Cooling Configuration,” Int. J. Heat Mass Transfer, vol. 101, pp. 988–991, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.104.
  • L. Luo, C. L. Wang, L. Wang, B. Sunden and S. T. Wang, “Computational Investigation of Dimple Effects on Heat Transfer and Friction Factor in a Lamilloy Cooling Structure,” J. Enhanced Heat Transf., vol. 22, no. 2, pp. 147–175, 2015. DOI: 10.1615/JEnhHeatTransf.2015013956.
  • L. Luo, C. L. Wang, L. Wang, B. Sunden and S. Wang, “Effects of Pin Fin Configurations on Heat Transfer and Friction Factor in an Improved Lamilloy Cooling Structure,” Heat Trans. Res., vol. 48, no. 7, pp. 657–679, 2017. DOI: 10.1615/HeatTransRes.2016013575.
  • C. Wang, J. Z. Zhang, C. H. Wang, J. Ji and X. M. Tan, “Geometric-Parameter Influences and Orthogonal Evaluation on Thermal-Mechanical Performances for a Laminated Cooling Structure,” Heat Trans. Res., vol. 51, no. 1, pp. 57–82, 2020. DOI: 10.1615/HeatTransRes.2019030676.
  • ANSYS Inc. ANSYS Workbench Release 11.0. PA, USA: ANSYS Inc., 2008.
  • ANSYS Inc. ANSYS Fluent 14.0 User’s Guide. PA, USA: ANSYS Inc., 2012.
  • K. Harrison and D. Bogard, “Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance,” ASME Paper GT2008-50366, 2008. DOI: 10.1115/GT2008-51423.
  • M. Silieti, A. J. Kassab and E. Divo, “Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models,” Int. J. Therm. Sci., vol. 48, no. 12, pp. 2237–2248, 2009. DOI: 10.1016/j.ijthermalsci.2009.04.007.
  • Y. Huang, J. Z. Zhang, C. H. Wang and X. D. Zhu, “Multi-Objective Optimization of Laidback Fan-Shaped Film Cooling Hole on Turbine Vane Suction Surface,” Heat Mass Transfer, vol. 55, no. 4, pp. 1181–1194, 2019. DOI: 10.1007/s00231-018-2500-6.
  • C. Nakamata, F. Mimura, M. Matsushita, T. Yamane, Y. Fukuyama and T. Yoshida, “Local Cooling Effectiveness Distribution of an Integrated Impingement and Pin Fin Cooling Configuration,” ASME Paper GT2007-27020, 2007. DOI: 10.1115/GT2007-27020.
  • K. D. Lee and K. Y. Kim, “Surrogate Based Optimization of a Laidback Fan-Shaped Hole for Film-Cooling,” Int. J. Heat Fluid Flow, vol. 32, no. 1, pp. 226–238, 2011. DOI: 10.1016/j.ijheatfluidflow.2010.08.007.
  • K. D. Lee, S. M. Kim and K. Y. Kim, “Multi-Objective Optimization of a Row of Film Cooling Holes Using an Evolutionary Algorithm and Surrogate Modelling,” Num. Heat Transfer Part A, vol. 63, no. 8, pp. 623–641, 2013. DOI: 10.1080/10407782.2013.751316.
  • J. H. Kim and K. Y. Kim, “Surrogate-Based Optimization of a Cratered Cylindrical Hole to Enhance Film Cooling Effectiveness,” J. Therm. Sci. Technol., vol. 11, pp. 1–14, 2016.
  • C. H. Wang, J. Z. Zhang and J. H. Zhou, “Optimization of a Fan-Shaped Hole to Improve Film Cooling Performance by RBF Neural Network and Genetic Algorithm,” Aerosp. Sci. Technol., vol. 58, pp. 18–25, 2016. DOI: 10.1016/j.ast.2016.08.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.