Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 3
1,415
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Endwall film cooling holes design upstream of the leading edge of a turbine vane

, , , ORCID Icon & ORCID Icon
Pages 222-245 | Received 01 Sep 2020, Accepted 07 Oct 2020, Published online: 23 Oct 2020

References

  • W. Du, L. Luo, S. Wang and X. Zhang, “Flow structure and heat transfer characteristics in a 90-deg turned pin fined duct with different dimple/protrusion depths,” Appl. Therm. Eng., vol. 146, pp. 826–842, 2019. DOI: 10.1016/j.applthermaleng.2018.10.052.
  • J. Liu, et al., “Application of fractal theory in the arrangement of truncated ribs in a rectangular cooling channel (4: 1) of a turbine blade,” Appl. Therm. Eng., vol. 139, pp. 488–505, 2018. DOI: 10.1016/j.applthermaleng.2018.04.133.
  • R. J. Goldstein, “Film cooling,” in Advances in Heat Transfer, vol. 7. Amsterdam: Elsevier, 1971, pp. 321–379.
  • D. G. Bogard and K. A. Thole, “Gas turbine film cooling,” J. Propulsion Power, vol. 22, no. 2, pp. 249–270, 2006. DOI: 10.2514/1.18034.
  • J. F. Zhou, X. J. Wang, J. Li and H. K. Lu, “CFD analysis of mist/air film cooling on a flat plate with different hole types,” Numer. Heat Transfer Part A-Appl., vol. 71, no. 11, pp. 1123–1140, 2017. DOI: 10.1080/10407782.2017.1337994.
  • S. Ito, R. Goldstein and E. Eckert, “Film cooling of a gas turbine blade,” J. Eng. Power, vol. 100, no. 3, pp. 476–481, 1978. DOI: 10.1115/1.3446382.
  • R. S. Bunker, “A review of shaped hole turbine film-cooling technology,” ASME J. Heat Transfer, vol. 127, no. 4, pp. 441–453, 2005. DOI: 10.1115/1.1860562.
  • S. Ekkad and J. C. Han, “A review of hole geometry and coolant density effect on film cooling,” ASME 2013 Heat Transfer Summer Conference Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, American Society of Mechanical Engineers, 2013, pp. V003T020A003.
  • C. Wang, F. Fan, J. Zhang, Y. Huang and H. Feng, “Large eddy simulation of film cooling flow from converging slot-holes,” Int. J. Therm. Sci., vol. 126, pp. 238–251, 2018. DOI: 10.1016/j.ijthermalsci.2018.01.007.
  • S. Lee, W. Hwang and K. Yee, “Robust design optimization of a turbine blade film cooling hole affected by roughness and blockage,” Int. J. Therm. Sci., vol. 133, pp. 216–229, 2018. DOI: 10.1016/j.ijthermalsci.2018.07.012.
  • J. C. Han and S. Ekkad, “Recent development in turbine blade film cooling,” Int. J. Rotating Mach., vol. 7, no. 1, pp. 21–40, 2001. DOI: 10.1155/S1023621X01000033.
  • N. J. Greiner, M. D. Polanka and J. L. Rutledge, “Impact of wall boundary condition on scaling film cooling performance from near ambient to engine temperatures,” Int. J. Therm. Sci., vol. 132, pp. 378–386, 2018. DOI: 10.1016/j.ijthermalsci.2018.06.004.
  • K. Singh, B. Premachandran and M. R. Ravi, “Numerical investigation of film cooling on a 2D corrugated surface,” Numer. Heat Transfer Part A-Appl., vol. 70, no. 11, pp. 1253–1270, 2016. DOI: 10.1080/10407782.2016.1230431.
  • K. Ghosh and R. J. Goldstein, “Effect of inlet skew on heat/mass transfer from a simulated turbine blade,” ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2011, pp. 1677–1687. DOI: 10.1115/GT2011-46543.
  • C. C. Shiau, et al., “Turbine vane endwall film cooling comparison from five film-hole design patterns and three upstream leakage injection angles,” ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers, 2018, pp. V05CT19A005.
  • D. Granser and T. Schulenberg, “Prediction and measurement of film cooling effectiveness for a first-stage turbine vane shroud,” ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers, 1990, pp. V004T009A020.
  • S. W. Burd and T. W. Simon, “Effects of slot bleed injection over a contoured endwall on nozzle guide vane cooling performance: part I—Flow field measurements,” ASME Turbo Expo 2000: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2000, pp. V003T001A007.
  • R. A. Oke, T. W. Simon, S. W. Burd and R. Vahlberg, “Measurements in a turbine cascade over a contoured endwall: Discrete hole injection of bleed flow,” ASME Turbo Expo 2000: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2000, pp. V003T001A022.
  • R. Oke, et al., “Measurements over a film-cooled, contoured endwall with various coolant injection rates,” ASME Turbo Expo 2001: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2001, pp. V003T001A025.
  • L. J. Zhang and R. S. Jaiswal, “Turbine nozzle endwall film cooling study using pressure sensitive paint,” ASME Turbo Expo 2001: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2001, pp. V003T001A030.
  • D. Knost and K. Thole, “Adiabatic effectiveness measurements of endwall film-cooling for a first stage vane,” ASME Turbo Expo 2004: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2004, pp. 353–362. DOI: 10.1115/GT2004-53326.
  • C. C. Shiau, A. F. Chen, J. C. Han, S. Azad and C. P. Lee, “Full-scale turbine vane endwall film-cooling effectiveness distribution using pressure-sensitive paint technique,” J. Turbomach., vol. 138, no. 5, pp. 51002, 2016. DOI: 10.1115/1.4032166.
  • A. Sinha, D. Bogard and M. Crawford, “Film-cooling effectiveness downstream of a single row of holes with variable density ratio,” J. Turbomach., vol. 113, no. 3, pp. 442–449, 1991. DOI: 10.1115/1.2927894.
  • W. Haas, W. Rodi and B. Schonung, “The influence of density difference between hot and coolant gas on film cooling by a row of holes: Predictions and experiments,” J. Turbomach., vol. 114, no. 4, pp. 747–755, 1992. DOI: 10.1115/1.2928028.
  • P. Ligrani, J. Wigle and S. Jackson, “Film-cooling from holes with compound angle orientations: part 2—Results downstream of a single row of holes with 6D spanwise spacing,” ASME J. Heat Transfer, vol. 116, no. 2, pp. 353–362, 1994. DOI: 10.1115/1.2911407.
  • R. Goldstein and P. Jin, “Film cooling downstream of a row of discrete holes with compound angle,” ASME Turbo Expo 2000: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2000, pp. V003T001A054.
  • W. Li, X. Li, J. Ren and H. Jiang, “Large eddy simulation of compound angle hole film cooling with hole length-to-diameter ratio and internal crossflow orientation effects,” Int. J. Therm. Sci., vol. 121, pp. 410–423, 2017. DOI: 10.1016/j.ijthermalsci.2017.08.001.
  • H. A. Zuniga and J. S. Kapat, “Effect of increasing pitch-to-diameter ratio on the film cooling effectiveness of shaped and cylindrical holes embedded in trenches,” ASME Turbo Expo 2009: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2009, pp. 863–872. DOI: 10.1115/GT2009-60080.
  • A. F. Chen, S. J. Li and J. C. Han, “Film cooling for cylindrical and fan-shaped holes using pressure-sensitive paint measurement technique,” J. Thermophys. Heat Transfer, vol. 29, no. 4, pp. 775–784, 2015. DOI: 10.2514/1.T4518.
  • B. Jubran and A. Brown, “Film cooling from two rows of holes inclined in the streamwise and spanwise directions,” J. Eng. Gas Turbines Power, vol. 107, no. 1, pp. 84–91, 1985. DOI: 10.1115/1.3239701.
  • A. Sinha, D. Bogard and M. Crawford, “Gas turbine film cooling: Flowfield due to a second row of holes,” ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers, 1990, pp. V004T009A011.
  • P. Ligrani, J. Wigle, S. Ciriello and S. Jackson, “Film-cooling from holes with compound angle orientations: part 1—Results downstream of two staggered rows of holes with 3D spanwise spacing,” ASME J. Heat Transfer, vol. 116, no. 2, pp. 341–352, 1994. DOI: 10.1115/1.2911406.
  • B. Jubran and B. Maiteh, “Film cooling and heat transfer from a combination of two rows of simple and/or compound angle holes in inline and/or staggered configuration,” Heat Mass Transfer, vol. 34, no. 6, pp. 495–502, 1999. DOI: 10.1007/s002310050287.
  • J. Dittmar, A. Schulz and S. Wittig, “Assessment of various film cooling configurations including shaped and compound angle holes based on large scale experiments,” ASME Turbo Expo 2002: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2002, pp. 109–118. DOI: 10.1115/GT2002-30176.
  • R. Hou, F. B. Wen, X. L. Tang, T. Cui and S. T. Wang, “Improvement of film cooling performance by trenched holes on turbine leading-edge models,” Numer. Heat Transfer Part A-Appl., vol. 76, no. 3, pp. 160–177, 2019. DOI: 10.1080/10407782.2019.1627832.
  • K. N. Huang, J. Z. Zhang, C. H. Wang and Y. Shan, “Numerical evaluation on single-row trenched-hole film cooling performances on turbine guide vane under engine-representative conditions,” Numer. Heat Transfer Part A-Appl., vol. 76, no. 4, pp. 198–219, 2019. DOI: 10.1080/10407782.2019.1627830.
  • N. Sundaram and K. Thole, “Bump and trench modifications to film-cooling holes at the vane-endwall junction,” J. Turbomach., vol. 130, no. 4, pp. 41013, 2008. DOI: 10.1115/1.2812933.
  • N. Sundaram and K. Thole, “Film-cooling flowfields with trenched holes on an endwall,” J. Turbomach., vol. 131, no. 4, pp. 41007, 2009. DOI: 10.1115/1.3068316.
  • S. Lynch and K. Thole, “The effect of combustor-turbine interface gap leakage on the endwall heat transfer for a nozzle guide vane,” J. Turbomach., vol. 130, no. 4, pp. 41019, 2008. DOI: 10.1115/1.2812950.
  • M. B. Kang, A. Kohli and K. Thole, “Heat transfer and flowfield measurements in the leading edge region of a stator vane endwall,” J. Turbomach., vol. 121, no. 3, pp. 558–568, 1999. DOI: 10.1115/1.2841351.