Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 4
246
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement of the turbulent convective heat transfer in channels through the baffling technique and oil/multiwalled carbon nanotube nanofluids

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 311-351 | Received 15 Sep 2020, Accepted 22 Oct 2020, Published online: 08 Dec 2020

References

  • A. Kumar and M. H. Kim, “Convective heat transfer enhancement in solar air channels,” Appl. Therm. Eng., vol. 89, pp. 239–261, 2015.
  • S. Rashidi, M. H. Kashefi, and F. Hormozi, “Potential applications of inserts in solar thermal energy systems – a review to identify the gaps and frontier challenges,” Solar Energy, vol. 171, pp. 929–952, 2018.
  • U. Salahuddin, M. Bilal, and H. Ejaz, “A review of the advancements made in helical baffles used in shell and tube heat exchangers,” Int. Commun. Heat Mass Transf., vol. 67, pp. 104–108, 2015.
  • M. Awais and A. A. Bhuiyan, “Heat and mass transfer for compact heat exchanger (CHXs) design: a state-of-the-art-review,” Int. J. Heat Mass Transf., vol. 127, pp. 359–380, 2018.
  • A. A. Bhuiyan and A. K. M. S. Islam, “Thermal and hydraulic performance of finned-tube heat exchangers under different flow ranges: a review on modeling and experiment,” Int. J. Heat Mass Transf., vol. 101, pp. 38–59, 2016.
  • J. Hu and G. Zhang, “Performance improvement of solar air collector based on airflow reorganization: a review,” Appl. Therm. Eng., vol. 155, pp. 592–611, 2019.
  • S. K. Jain, G. D. Agrawal, and R. Misra, “A detailed review on various V-shaped ribs roughened solar air heater,” Heat Mass Transf., vol. 55, no. 12, pp. 3369–3412, 2019. doi:10.1007/s00231-019-02656-4.
  • A. E. Kabeel, M. H. Hamed, Z. M. Omara, and A. W. Kandeal, “Solar air heaters: design configurations, improvement methods and applications – a detailed review,” Renew. Sust. Energy Rev., vol. 70, pp. 1189–1206, 2017. doi:10.1016/j.rser.2016.12.021.
  • K. Kumar, D. R. Prajapati, and S. Samir, “Heat transfer and friction characteristics of artificially roughened duct used for solar air heaters – a review,” J. Inst. Eng. India Ser. C, vol. 99, no. 1, pp. 105–123, 2018. doi:10.1007/s40032-017-0415-5
  • R. V. Rao, A. Saroj, P. Ocloń, and J. Taler, “Design optimization of heat exchangers with advanced optimization techniques: a review,” Arch. Comput. Methods Eng., vol. 27, no. 2, pp. 517–548, 2020. doi:10.1007/s11831-019-09318-y.
  • L. S. Ismail, R. Velraj, and C. Ranganayakulu, “Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers – a review,” Renew. Sust. Energy Rev., vol. 14, no. 1, pp. 478–485, 2010.
  • X. Zheng and Z. Qi, “A comprehensive review of offset strip fin and its applications,” Appl. Therm. Eng., vol. 139, pp. 61–75, 2018.
  • R. Kamali and A. R. Binesh, “The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces,” Int. Commun. Heat Mass Transf., vol. 35, no. 8, pp. 1032–1040, 2008.
  • P. Promvonge and C. Thianpong, “Thermal performance assessment of turbulent channel flows over different shaped ribs,” Int. Commun. Heat Mass Transf., vol. 35, no. 10, pp. 1327–1334, 2008.
  • S. Sripattanapipat and P. Promvonge, “Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles,” Int. Commun. Heat Mass Transf., vol. 36, no. 1, pp. 32–38, 2009.
  • H. Zhao, Z. Liu, C. Zhang, N. Guan, and H. Zhao, “Pressure drop and friction factor of a rectangular channel with staggered mini pin fins of different shapes,” Exp. Therm. Fluid Sci., vol. 71, pp. 57–69, 2016.
  • F. Wang, J. Zhang, and S. Wang, “Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins,” Propuls. Power Res., vol. 1, no. 1, pp. 64–70, 2012.
  • S. K. Saini and R. P. Saini, “Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness,” Sol Energy, vol. 82, no. 12, pp. 1118–1130, 2008.
  • S. Skullong, S. Kwankaomeng, C. Thianpong, and P. Promvonge, “Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators,” Int. Commun. Heat Mass Transf., vol. 50, pp. 34–43, 2014.
  • R. Ben Slama, “Contribution to the study and the development of pumps and solar air collectors,” Thesis of Speciality in Energetics, University of Valenciennes, France, 1987.
  • A. Bekele, M. Mishra, and S. Dutta, “Effects of delta-shaped obstacles on the thermal performance of solar air heater,” Adv. Mech. Eng., vol. 3, pp. 103502, 2011.
  • E. A. Handoyo, D. Ichsani, and S. Prabowo, “Numerical studies on the effect of delta-shaped obstacles’ spacing on the heat transfer and pressure drop in v-corrugated channel of solar air heater,” Sol Energy, vol. 131, pp. 47–60, 2016.
  • K. Torii, K. M. Kwak, and K. Nishino, “Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers,” Int. J. Heat Mass Transf., vol. 45, no. 18, pp. 3795–3801, 2002.
  • G. Zhou and Q. Ye, “Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators,” Appl. Therm. Eng., vol. 37, pp. 241–248, 2012.
  • Y. G. Lei, Y. L. He, R. Li, and Y. F. Gao, “Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles,” Chem. Eng. Process, vol. 47, no. 12, pp. 2336–2345, 2008.
  • J. Wen, H. Yang, S. Wang, Y. Xue, and X. Tong, “Experimental investigation on performance comparison for shell-and-tube heat exchangers with different baffles,” Int. J. Heat Mass Transf., vol. 84, pp. 990–997, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.12.071.
  • C. Dong et al., “An analysis of performance on trisection helical baffles heat exchangers with diverse inclination angles and baffle structures,” Chem. Eng. Res. Design, vol. 121, pp. 421–430, 2017.
  • S. B. Bopche and M. S. Tandale, “Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct,” Int. J. Heat Mass Transf., vol. 52, no. 11–12, pp. 2834–2848, 2009.
  • P. Promvonge, S. Tamna, M. Pimsarn, and C. Thianpong, “Thermal characterization in a circular tube fitted with inclined horseshoe baffles,” Appl. Therm. Eng., vol. 75, pp. 1147–1155, 2015.
  • S. Skullong, C. Thianpong, N. Jayranaiwachira, and P. Promvonge, “Experimental and numerical heat transfer investigation in turbulent square-duct flow through oblique horseshoe baffles,” Chem. Eng. Process, vol. 99, pp. 58–71, 2016.
  • S. Singh, S. Chander, and J. S. Saini, “Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs,” Energy, vol. 36, no. 8, pp. 5053–5064, 2011.
  • S. Tamna, S. Skullong, C. Thianpong, and P. Promvonge, “Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators,” Sol Energy, vol. 110, pp. 720–735, 2014.
  • S. Chamoli and N. S. Thakur, “Correlations for solar air heater duct with V-shaped perforated baffles as roughness elements on absorber plate,” Int. J. Sustain Energy, vol. 35, no. 1, pp. 1–20, 2016.
  • W. Jedsadaratanachai and A. Boonloi, “Effects of blockage ratio and pitch ratio on thermal performance in a square channel with 30° double V-baffles,” Case Stud. Therm. Eng., vol. 4, pp. 118–128, 2014.
  • A. Kumar, J. L. Bhagoria, and R. M. Sarviya, “Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs,” Energy Convers. Manage., vol. 50, no. 8, pp. 2106–2117, 2009.
  • P. Sriromreun, C. Thianpong, and P. Promvonge, “Experimental and numerical study on heat transfer enhancement in a channel with Z-shaped baffles,” Int. Commun. Heat Mass Transf., vol. 39, no. 7, pp. 945–952, 2012.
  • K. Nanan, C. Thianpong, M. Pimsarn, V. Chuwattanakul, and S. Eiamsaard, “Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators,” Appl. Therm. Eng., vol. 114, pp. 130–147, 2017.
  • M. Baou, F. Afsharpanah, and M. A. Delavar, “Numerical study of enhancing vehicle radiator performance using different porous fin configurations and materials,” Heat Trans. Asian Res., vol. 49, no. 1, pp. 502–518, 2020.
  • K. PS, R. Kumar, and V. V. N, “Comparative study of mechanical and chemical methods for surface cleaning of amarine shell-and-tube heat exchanger,” Heat Trans. Asian Res, vol. 47, no. 3, pp. 520–530, 2018.
  • H. Olfian, A. Z. Sheshpoli, and S. S. M. Ajarostaghi, “Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles,” Heat Transf. Asian Res., vol. 49, no. 3, pp. 1149–1169, 2020. doi:10.1002/htj.21656.
  • M. Bezaatpour and M. Goharkhah, “A magnetic vortex generator for simultaneous heat transfer enhancement and pressure drop reduction in a mini channel,” Heat Transf. Asian Res., vol. 49, no. 3, pp. 1192–1213, 2020. doi:10.1002/htj.21658.
  • A. Ghiami, A. Kianifar, K. Aryana, and M. Edalatpour, “Energy and exergy analysis of a single-pass sequenced array baffled solar air heater with packed bed latent storage unit for nocturnal use,” Heat Trans. Asian Res, vol. 46, no. 6, pp. 546–568, 2017. ‐
  • A. E. Kabeel, Y. Taamneh, R. Sathyamurthy, P. Naveen Kumar, A. M. Manokar, and T. Arunkumar, “Experimental study on conventional solar still integrated with inclined solar still under different water depth,” Heat Transf. Asian Res., vol. 48, no. 1, pp. 100–114, 2019.
  • M. Kudoh, S. Sasaki, T. Hatada, and M. Morimoto, “A simple method for predicting the performance of a heat exchanger mounted in an air conditioner (1st Report, Proposed Reduced-Mesh Analysis Modeling Method),” Heat Trans. Asian Res., vol. 33, no. 1, pp. 12–23, 2004.
  • S. A. Nada, E. I. Eid, G. B. Abd El Aziz, and H. A. Hassan, “Performance enhancement of shell and helical coil water coolers using different geometric and fins conditions,” Heat Trans. Asian Res., vol. 45, no. 7, pp. 631–647, 2016.
  • J. Prathap Kumar and J. C. Umavathi, “Free convective flow in an open-ended vertical porous wavy channel with a perfectly conductive thin baffle,” Heat Trans. Asian Res., vol. 44, no. 3, pp. 227–256, 2015.
  • A. S. Abdullah, M. I. Amro, M. M. Younes, Z. M. Omara, A. E. Kabeel, and F. A. Essa, “Experimental investigation of single pass solar air heater with reflectors and turbulators,” Alex. Eng. J., vol. 59, no. 2, pp. 579–587, 2020.
  • J. Wen, K. Li, Y. Liu, H. Liu, S. Wang, and J. Tu, “Application of entransy theory on structure optimization of serrated fin in plate-fin heat exchanger,” Appl. Therm. Eng., vol. 173, pp. 114809, 2020. doi:10.1016/j.applthermaleng.2019.114809.
  • P. T. Saravanakumar, D. Somasundaram, and M. M. Matheswaran, “Exergetic investigation and optimization of arc shaped rib roughened solar air heater integrated with fins and baffles,” Appl. Therm. Eng., vol. 175, pp. 115316, 2020. doi:10.1016/j.applthermaleng.2020.115316.
  • J. Y. Lv, Z. C. Liu, and W. Liu, “Active design for the tube insert of center-connected deflectors based on the principle of exergy destruction minimization,” Int. J. Heat Mass Transf., vol. 150, pp. 119260, 2020.
  • C. M. Yang and P. Hrnjak, “Diabatic visualization shows effects of micro-fins on evaporation of R410A: smooth, axial micro-fin, and helical micro-fin tubes,” Int. J. Heat Mass Transf., vol. 150, pp. 119276, 2020.
  • Z. He et al., “Combustion characteristics and thermal enhancement of premixed hydrogen/air in micro combustor with pin fin arrays,” Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 5014–5027, 2020. doi:10.1016/j.ijhydene.2019.12.093.
  • C. Yu, H. Zhang, M. Zeng, R. Wang, and B. Gao, “Numerical study on turbulent heat transfer performance of a new compound parallel flow shell and tube heat exchanger with longitudinal vortex generator,” Appl. Therm. Eng., vol. 164, pp. 114449, 2020.
  • K. Nidhul, S. Kumar, A. K. Yadav, and S. Anish, “Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis,” Energy, vol. 200, pp. 117448, 2020.
  • P. Promvonge and S. Skullong, “Thermo-hydraulic performance in heat exchanger tube with V-shaped winglet vortex generator,” Appl. Therm. Eng., vol. 164, pp. 114424, 2020.
  • M. E. Nakhchi, J. A. Esfahani, and K. C. Kim, “Numerical study of turbulent flow inside heat exchangers using perforated louvered strip inserts,” Int. J. Heat Mass Transf., vol. 148, pp. 119143, 2020.
  • Z. Haddad, C. Abid, H. F. Oztop, and A. Mataoui, “A review on how the researchers prepare their nanofluids,” Int. J. Therm. Sci., vol. 76, pp. 168–189, 2014.
  • S. Akilu, K. V. Sharma, A. T. Baheta, and R. Mamat, “A review of thermophysical properties of water based composite nanofluids,” Renew. Sust. Energy Rev., vol. 66, pp. 654–678, 2016.
  • J. Sarkar, P. Ghosh, and, A. Adil. “A review on hybrid nanofluids: recent research, development and applications,” Renewable Sust. Energy Rev., vol. 43, pp. 164–177, 2015.
  • E. Sadeghinezhad et al., “Comprehensive review on graphene nanofluids: recent research, development and applications,” Energy Convers. Manage., vol. 111, pp. 466–487, 2016.
  • M. H. Ahmadi, A. Mirlohi, M. A. Nazari, and R. Ghasem pour, “A review of thermal conductivity of various nanofluids,” J. Mol. Liquids, vol. 265, pp. 181–188, 2018. 10.1016/j.molliq.2018.05.124
  • K. Bashirnezhad et al., “Viscosity of nano fluids: a review of recent experimental studies,” Int. Commun. Heat Mass Transf., vol. 73, pp. 114–123, 2016. 10.1016/j.icheatmasstransfer.2016.02.005
  • S. H. A. Ahmad, R. Saidur, I. M. Mahbubul, and F. A. Al-Sulaiman, “Optical properties of various nanofluids used in solar collector: a review,” Renew. Sust. Energy Rev., vol. 73, pp. 1014–1030, 2017.
  • M. Bahiraei, “A comprehensive review on different numerical approaches for simulation in nanofluids: traditional and novel techniques,” J. Dispersion Sci. Technol., vol. 35, no. 7, pp. 984–996, 2014.
  • T. R. Shah and H. M. Ali, “Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review,” Solar Energy, vol. 183, pp. 173–203, 2019.
  • S. Kumar, G. G. Tejani, N. Pholdee, and S. Bureerat, “Multi-objective modified heat transfer search for truss optimization,” Eng. Comput., pp. 1–16, 2020. doi:10.1007/s00366-020-01010-1
  • M. Dehghan, F. Ebrahimi, and M. Vinyas, “Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes,” Eng. Comput., pp. 1–17, 2019. doi:10.1007/s00366-019-00790-5
  • F. Baharifard, K. Parand, and M. M. Rashidi, “Novel solution for heat and mass transfer of a MHD micropolar fluid flow on a moving plate with suction and injection,” Eng. Comput., pp. 1–18, 2020. doi:10.1007/s00366-020-01026-7
  • S. Baghsaz, S. Rezanejad, and M. Moghimi, “Numerical investigation of transient natural convection and entropy generation analysis in a porous cavity filled with nanofluid considering nanoparticles sedimentation,” J. Mol. Liquids, vol. 279, pp. 327–341, 2019. doi:10.1016/j.molliq.2019.01.117
  • M. S. Astanina, M. A. Sheremet, H. F. Oztop, and N. Abu-Hamdeh, “Mixed convection of Al2O3–water nanofluid in a lid-driven cavity having two porous layers,” Int. J. Heat Mass Transf., vol. 118, pp. 527–537, 2018.
  • M. A. Ismael, T. Armaghani, and A. J. Chamkha, “Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid,” J. Taiwan Inst. Chem. Eng., vol. 59, pp. 138–151, 2016. doi:10.1016/j.jtice.2015.09.012
  • M. Sheikholeslami, D. D. Ganji, and R. Moradi, “Forced convection in existence of Lorentz forces in a porous cavity with hot circular obstacle using nanofluid via Lattice Boltzmann method,” J. Mol. Liquids, vol. 246, pp. 103–111, 2017.
  • M. Izadi, G. Hoghoughi, R. Mohebbi, and M. Sheremet, “Nanoparticle migration and natural convection heat transfer of Cu–water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model,” J. Mol. Liquids, vol. 261, pp. 357–372, 2018. doi:10.1016/j.molliq.2018.04.063
  • S. Malik and A. K. Nayak, “MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating,” Int. J. Heat Mass Transf., vol. 111, pp. 329–345, 2017.
  • Z. Li, M. Sheikholeslami, M. Samandari, and A. Shafee, “Nanofluid unsteady heat transfer in a porous energy storage enclosure in existence of Lorentz forces,” Int. J. Heat Mass Transf., vol. 127, pp. 914–926, 2018.
  • M. Sheikholeslami, H. Keramati, A. Shafee, Z. Li, O. A. Alawad, and I. Tlili, “Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method,” Physica A, 2019. doi:10.1016/j.physa.2019.02.014
  • L. C. Demartini, H. A. Vielmo, and S. V. Möller, “Numeric and experimental analysis of the turbulent flow through a channel with baffle plates,” J. Braz. Soc. Mech. Sci. Eng., vol. 26, no. 2, pp. 153–159, 2004. DOI: 10.1590/S1678-58782004000200006.
  • M. M. Derakhshan and M. A. Akhavan-Behabadi, “Mixed convection of MWCNT-heat transfer oil nanofluid inside inclined plain and microfin tubes under laminar assisted flow,” Int. J. Therm. Sci., vol. 99, pp. 1–8, 2016.
  • M. R. Gholami, O. A. Akbari, A. Marzban, D. Toghraie, G. A. S. Shabani, and M. Zarringhalam, “The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel,” J. Therm. Anal. Calorim., vol. 134, no. 3, pp. 1611–1628, 2018.
  • Nasiruddin and M. H. K. Siddiqui, “Heat transfer augmentation in a heat exchanger tube using a baffle,” Int. J. Heat Fluid Flow, vol. 28, pp. 318–328, 2007.
  • P. Dutta and A. Hossain, “Internal cooling augmentation in rectangular channel using two inclined baffles,” Int. J. Heat Fluid Flow, vol. 26, no. 2, pp. 223–232, 2005.
  • F. R. Menter, “Two-equation Eddy-viscosity turbulence models for engineering applications,” AIAAJ, vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the SST turbulence model turbulence,” Heat Mass Transf., vol. 4, no. 4, pp. 625–632, 2003.
  • R. Hosseinnezhad, O. A. Akbari, H. H. Afrouzi, M. Biglarian, A. Koveiti, and D. Toghraie, “Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts,” J. Therm. Anal. Calorim., vol. 132, no. 1, pp. 741–759, 2018.
  • H. Alipour, A. Karimipour, M. R. Safaei, D. T. Semiromi, and O. A. Akbari, “Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver–water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel,” Physica E, vol. 88, pp. 60–76, 2017.
  • O. Manca, S. Nardini, and D. Ricci, “A numerical study of nanofluid forced convection in ribbed channels,” Appl. Therm. Eng., vol. 37, pp. 280–292, 2012.
  • F. Pourfattah, M. Motamedian, G. Sheikhzadeh, D. Toghraie, and O. A. Akbari, “The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of water–Al2O3 nanofluid in a tube,” Int. J. Mech. Sci., vol. 131-132, pp. 1106–1116, 2017.
  • A. M. Rashad, M. M. Rashidi, G. Lorenzini, S. E. Ahmed, and A. M. Aly, “Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid,” Int. J. Heat Mass Transf., vol. 104, pp. 878–889, 2017.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980,
  • B. P. Leonard and S. Mokhtari, 1990. Ultra-sharp nonoscillatory convection schemes for high-speed steady multidimensional flow, NASA TM 1-2568, NASA Lewis Research Center.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.