Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 4
367
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Two-dimensional pore-scale investigation of liquid water evolution in the cathode of proton exchange membrane fuel cells

, &
Pages 261-277 | Received 24 Sep 2020, Accepted 30 Oct 2020, Published online: 13 Nov 2020

References

  • A. Z. Weber and J. Newman, “Coupled thermal and water management in polymer electrolyte fuel cells,” J. Electrochem. Soc., vol. 153, no. 12, pp. A2205, 2006.
  • J. Zhao and X. Li, “A review of polymer electrolyte membrane fuel cell durability for vehicular applications: degradation modes and experimental techniques,” Energy Convers. Manage., vol. 199, pp. 112022, 2019. DOI: 10.1016/j.enconman.2019.112022.
  • J. Shen, Z. Tu, and S. H. Chan, “Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel,” Appl. Therm. Eng., vol. 149, pp. 1408–1418, 2019.
  • K. Tüber, D. Pócza, and C. Hebling, “Visualization of water buildup in the cathode of a transparent PEM fuel cell,” J. Power Sources, vol. 124, no. 2, pp. 403–414, 2003.
  • I. Manke, et al., “Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiography,” Appl. Phys. Lett., vol. 90, no. 17, pp. 174105, 2007. DOI: 10.1063/1.2731440.
  • C. Hartnig, I. Manke, R. Kuhn, N. Kardjilov, J. Banhart, and W. Lehnert, “Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells,” Appl. Phys. Lett., vol. 92, no. 13, pp. 134106, 2008. DOI: 10.1063/1.2907485.
  • C. Hartnig, I. Manke, R. Kuhn, S. Kleinau, J. R. Goebbels, and J. Banhart, “High-resolution in-plane investigation of the water evolution and transport in PEM fuel cells,” J. Power Sources, vol. 188, no. 2, pp. 468–474, 2009.
  • B. Chen, Y. Cai, J. Shen, Z. Tu, and S. H. Chan, “Performance degradation of a proton exchange membrane fuel cell with dead-ended cathode and anode,” Appl. Therm. Eng., vol. 132, pp. 80–86, 2018.
  • P. K. Sinha, P. P. Mukherjee, and C.-Y. Wang, “Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells,” J. Mater. Chem., vol. 17, no. 30, pp. 3089–3103, 2007.
  • P. P. Mukherjee, Q. Kang, and C.-Y. Wang, “Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells-progress and perspective,” Energy Environ. Sci., vol. 4, no. 2, pp. 346–369, 2011.
  • G. Zhang and K. Jiao, “Multi-phase models for water and thermal management of proton exchange membrane fuel cell: a review,” J. Power Sources, vol. 391, pp. 120–133, 2018.
  • J. H. Nam and M. Kaviany, “Effective diffusivity and water-saturation distribution in single-and two-layer PEMFC diffusion medium,” Int. J. Heat Mass Transfer, vol. 46, no. 24, pp. 4595–4611, 2003.
  • S. Litster, D. Sinton, and N. Djilali, “Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers,” J. Power Sources, vol. 154, no. 1, pp. 95–105, 2006.
  • S. Basu, C.-Y. Wang, and K. S. Chen, “Phase change in a polymer electrolyte fuel cell,” J. Electrochem. Soc., vol. 156, no. 6, pp. B748, 2009.
  • B. Straubhaar, J. L. Pauchet, and M. Prat, “Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cells,” Int. J. Heat Mass Transfer, vol. 102, pp. 891–901, 2016.
  • B. Straubhaar, J. Pauchet, and M. Prat, “Water transport in gas diffusion layer of a polymer electrolyte fuel cell in the presence of a temperature gradient. Phase change effect,” Int. J. Hydrogen Energy, vol. 40, no. 35, pp. 11668–11675, 2015. DOI: 10.1016/j.ijhydene.2015.04.027.
  • L. Chen, H.-B. Luan, and W.-Q. Tao, “Liquid water dynamic behaviors in the GDL and GC of PEMFCS using lattice Boltzmann method,” Front. Heat Mass Transfer, vol. 1, no. 2, pp. 023002, 2010. DOI: 10.5098/hmt.v1.2.3002.
  • W.-Z. Fang, L. Chen, Q.-J. Kang, and W.-Q. Tao, “Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio,” Int. J. Therm. Sci., vol. 114, pp. 172–183, 2017.
  • W.-Z. Fang, Y.-Q. Tang, C. Ban, Q. Kang, R. Qiao, and W.-Q. Tao, “Atomic layer deposition in porous electrodes: a pore-scale modeling study,” Chem. Eng. J., vol. 378, pp. 122099, 2019. DOI: 10.1016/j.cej.2019.122099.
  • A. Xu, W. Shyy, and T. Zhao, “Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries,” Acta Mech. Sin., vol. 33, no. 3, pp. 555–574, 2017.
  • P. Zhou and C. Wu, “Liquid water transport mechanism in the gas diffusion layer,” J. Power Sources, vol. 195, no. 5, pp. 1408–1415, 2010.
  • G. R. Molaeimanesh and M. H. Akbari, “A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method,” Korean J. Chem. Eng., vol. 32, no. 3, pp. 397–405, 2015.
  • G. Molaeimanesh and M. Akbari, “A three-dimensional pore-scale model of the cathode electrode in polymer-electrolyte membrane fuel cell by lattice Boltzmann method,” J. Power Sources, vol. 258, pp. 89–97, 2014.
  • X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E Stat. Phys., vol. 47, no. 3, pp. 1815–1819, 1993. DOI: 10.1103/physreve.47.1815.
  • Q. Kang, D. Zhang, and S. Chen, “Displacement of a two-dimensional immiscible droplet in a channel,” Phys. Fluids, vol. 14, no. 9, pp. 3203–3214, 2002.
  • Q. Li, K. Luo, and X. Li, “Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model,” Phys. Rev. E, vol. 87, no. 5, pp. 053301, 2013. DOI: 10.1103/PhysRevE.87.053301.
  • W.-Z. Fang, Y.-Q. Tang, C. Yang, and W.-Q. Tao, “Numerical simulations of the liquid-vapor phase change dynamic processes in a flat micro heat pipe,” Int. J. Heat Mass Transfer, vol. 147, pp. 119022, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119022.
  • S. Ponce Dawson, S. Chen, and G. D. Doolen, “Lattice Boltzmann computations for reaction-diffusion equations,” J. Chem. Phys., vol. 98, no. 2, pp. 1514–1523, 1993.
  • M. H. Bouzidi, M. Firdaouss, and P. Lallemand, “Momentum transfer of a Boltzmann-lattice fluid with boundaries,” Phys. Fluids, vol. 13, no. 11, pp. 3452–3459, 2001.
  • S. D. Walsh and M. O. Saar, “Interpolated lattice Boltzmann boundary conditions for surface reaction kinetics,” Phys. Rev. E, vol. 82, no. 6, pp. 066703, 2010. DOI: 10.1103/PhysRevE.82.066703.
  • M. Kamali, S. Sundaresan, H. van den Akker, and J. Gillissen, “A multi-component two-phase lattice Boltzmann method applied to a 1-D Fischer-Tropsch reactor,” Chem. Eng. J., vol. 207–208, pp. 587–595, 2012. vol
  • W.-Z. Fang, H. Zhang, L. Chen, and W.-Q. Tao, “Numerical predictions of thermal conductivities for the silica aerogel and its composites,” Appl. Therm. Eng., vol. 115, pp. 1277–1286, 2017.
  • J. Zhang, “Lattice Boltzmann method for microfluidics: models and applications,” Microfluid Nanofluid, vol. 10, no. 1, pp. 1–28, 2011.
  • S. Huo, K. Jiao, and J. W. Park, “On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell,” Appl. Energy, vol. 233–234, pp. 776–788, 2019. vol
  • Q. Kang, P. C. Lichtner, and D. Zhang, “An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale,” Water Resour. Res., vol. 43, no. 12, pp. W12S14, 2007. DOI: 10.1029/2006WR005551.
  • L. Chen, Q. Kang, B. A. Robinson, Y.-L. He, and W.-Q. Tao, “Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems,” Phys. Rev. E, vol. 87, no. 4, pp. 043306, 2013. DOI: 10.1103/PhysRevE.87.043306.
  • P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. Fluids, vol. 18, no. 4, pp. 042101, 2006. DOI: 10.1063/1.2187070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.