Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 5
294
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Optimization and analysis of maximum temperature in a battery pack affected by low to high Prandtl number coolants using response surface methodology and particle swarm optimization algorithm

ORCID Icon, , , &
Pages 406-435 | Received 19 Sep 2020, Accepted 30 Oct 2020, Published online: 22 Nov 2020

References

  • A. Jarrett and I. Y. Kim, “Design optimization of electric vehicle battery cooling plates for thermal performance,” J. Power Sources, vol. 196, no. 23, pp. 10359–10368, 2011. DOI: 10.1016/j.jpowsour.2011.06.090.
  • A. Ahmadian, M. Sedghi, A. Elkamel, M. Fowler and M. Aliakbar Golkar, “Plug-in electric vehicle batteries degradation modeling for smart grid studies: review, assessment and conceptual framework,” Renew Sustain Energy Rev., vol. 81, pp. 2609–2624, 2018. DOI: 10.1016/j.rser.2017.06.067.
  • M. Al-Zareer, I. Dincer and M. A. Rosen, “A review of novel thermal management systems for batteries,” Int. J. Energy Res., vol. 42, no. 10, pp. 3182–3124, 2018. DOI: 10.1002/er.4095.
  • S. Madani, E. Schaltz and S. Knudsen Kaer, “Review of parameter determination for thermal modeling of lithium ion batteries,” Batteries, vol. 4, no. 2, pp. 20, 2018. DOI: 10.3390/batteries4020020.
  • M. A. Hannan, M. S. H. Lipu, A. Hussain and A. Mohamed, “A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations,” Renew Sustain Energy Rev., vol. 78, pp. 834–854, 2017. DOI: 10.1016/j.rser.2017.05.001.
  • Z. An, L. Jia, Y. Ding, C. Dang and X. Li, “A review on lithium-ion power battery thermal management technologies and thermal safety,” J. Therm. Sci., vol. 26, no. 5, pp. 391–412, 2017. DOI: 10.1007/s11630-017-0955-2.
  • F. L. Yun, L. Tang, W. C. Li, W. R. Jin, J. Pang and S. G. Lu, “Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery,” Rare Met., vol. 35, no. 4, pp. 309–319, 2016. DOI: 10.1007/s12598-015-0605-3.
  • A. R. Mayyas, et al., “Comprehensive thermal modeling of a power-split hybrid powertrain using battery cell model,” J. Power Sources, vol. 196, no. 15, pp. 6588–6594, 2011. DOI: 10.1016/j.jpowsour.2011.03.036.
  • N. Omar, et al., “Lithium iron phosphate based battery–assessment of the aging parameters and development of cycle life model,” Appl. Energy, vol. 113, pp. 1575–1585, 2014.
  • S. Wang, K. Li, Y. Tian, J. Wang, Y. Wu and S. Ji, “Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow,” Appl. Therm. Eng., vol. 152, pp. 445–454. 2019. DOI: 10.1016/j.applthermaleng.2019.02.061..
  • T. Wang, K. Tseng, J. Zhao and Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies,” Appl. Energy, vol. 134, pp. 229–238, 2014.
  • Z. Lu, et al., “Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement,” Appl. Therm. Eng., vol. 136, pp. 28–40. 2018. DOI: 10.1016/j.applthermaleng.2018.02.080.
  • L. Fan, J. Khodadadi and A. A. Pesaran, “A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles,” J. Power Sources, vol. 238, pp. 301–312, 2013.
  • M. R. Giuliano, A. K. Prasad and S. G. Advani, “Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries,” J. Power Sources, vol. 216, pp. 345–352, 2012. DOI: 10.1016/j.jpowsour.2012.05.074..
  • C. Zhu, X. Li, L. Song and L. Xiang, “Development of a theoretically based thermal model for lithium ion battery pack,” J. Power Sources, vol. 223, pp. 155–164, 2013. DOI: 10.1016/j.jpowsour.2012.09.035.
  • R. Mahamud and C. Park, “Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity,” J. Power Sources, vol. 196, no. 13, pp. 5685–5696, 2011. DOI: 10.1016/j.jpowsour.2011.02.076.
  • K. Yu, X. Yang, Y. Cheng and C. Li, “Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack,” J. Power Sources, vol. 270, pp. 193–200, 2014. DOI: 10.1016/j.jpowsour.2014.07.086.
  • Z. Lu, X. Meng, L. Wei, W. Hu, L. Zhang and L. W. Jin, “Thermal management of densely-packed EV battery with forced air cooling strategies,” Energy Procedia, vol. 88, pp. 682–688, 2016.
  • Y-p Liu, C-z Ouyang, Q-b Jiang and B. Liang, “Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow,” J. Cent. South Univ., vol. 22, no. 10, pp. 3970–3976, 2015.
  • X. Na, H. Kang, T. Wang and Y. Wang, “Reverse layered air flow for Li-ion battery thermal management,” Appl. Therm. Eng., vol. 143, pp. 257–262, 2018.
  • F. He and L. Ma, “Thermal management of batteries employing active temperature control and reciprocating cooling flow,” Int. J. Heat Mass Transfer, vol. 83, pp. 164–172, 2015.
  • A. Samba, N. Omar, H. Gualous, P. Van den Bossche, J. Van Mierlo and T. I. Boubekeur, “Development of 2D thermal battery model for Lithium-ion pouch cells,” World Electr. Veh. Symp. Exhib, 2013. vol. 2013, pp. 1–9. 10.1109/EVS.2013.6915028.
  • O. S. Burheim, M. A. Onsrud, J. G. Pharoah and F. Vullum-Bruer, “Thermal conductivity, heat sources and temperature profiles of li-ion secondary batteries,” Electrochem. Soc., vol. 14, p. 1190, 2013.
  • H. Park, “A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles,” J. Power Sources, vol. 239, pp. 30–36, 2013. DOI: 10.1016/j.jpowsour.2013.03.102.
  • K. C. Chiu, C. H. Lin, S. F. Yeh, Y. H. Lin and K. C. Chen, “An electrochemical modeling of lithium-ion battery nail penetration,” J. Power Sources, vol. 251, pp. 254–263, 2014. DOI: 10.1016/j.jpowsour.2013.11.069.
  • Y. S. Choi and D. M. Kang, “Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles,” J. Power Sources, vol. 270, pp. 273–280, 2014. DOI: 10.1016/j.jpowsour.2014.07.120.
  • S. J. Drake, D. A. Wetz, J. K. Ostanek, S. P. Miller, J. M. Heinzel and A. Jain, “Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells,” J. Power Sources, vol. 252, pp. 298–304, 2014. DOI: 10.1016/j.jpowsour.2013.11.107.
  • D. Chalise, K. Shah, R. Prasher and A. Jain, “Conjugate heat transfer analysis of air/liquid cooling of a Li-ion battery pack,” J Electrochem Energy Convers Storage, vol. 15, pp. 1–8, 2018. DOI: 10.1115/1.4038258..
  • Y. Huo, Z. Rao, X. Liu and J. Zhao, “Investigation of power battery thermal management by using mini-channel cold plate,” Energy Convers. Manag., vol. 89, pp. 387–395, 2015. DOI: 10.1016/j.enconman.2014.10.015.
  • N. Javani, I. Dincer, G. F. Naterer and G. L. Rohrauer, “Modeling of passive thermal management for electric vehicle battery packs with PCM between cells,” Appl. Therm. Eng., vol. 73, no. 1, pp. 307–316, 2014. DOI: 10.1016/j.applthermaleng.2014.07.037.
  • M. Malik, I. Dincer, M. A. Rosen, M. Mathew and M. Fowler, “Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling,” Appl. Therm. Eng., vol. 129, pp. 472–481, 2018. DOI: 10.1016/j.applthermaleng.2017.10.029.
  • A. Nazari and S. Farhad, “Heat generation in lithium-ion batteries with different nominal capacities and chemistries,” Appl. Therm. Eng., vol. 125, pp. 1501–1517, 2017. DOI: 10.1016/j.applthermaleng.2017.07.126.
  • S. K. Mohammadian, S. M. Rassoulinejad-Mousavi and Y. Zhang, “Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam,” J. Power Sources, vol. 296, pp. 305–313, 2015. DOI: 10.1016/j.jpowsour.2015.07.056.
  • G. Karimi and A. R. Dehghan, “Thermal management analysis of a lithium-ion battery pack using flow network approach,” IJMEM, vol. 1, pp. 1, 2012. DOI: 10.11159/ijmem.2012.011.
  • W. Luo, F. He, Q. Huang, X. Li, G. Zhang and Z. Zhong, “Experimental investigation on thermal performance of silica cooling plate‐aluminate thermal plate‐coupled forced convection‐based pouch battery thermal management system,” Int. J. Energy Res., vol. 43, pp. 7604–7613, 2019.
  • B. Dawoud, E. Amer and D. Gross, “Experimental investigation of an adsorptive thermal energy storage,” Int. J. Energy Res., vol. 31, no. 2, pp. 135–147, 2007.
  • A. Afzal, A. D. M. Samee, R. K. A. Razak and M. K. Ramis, “Thermal management of modern electric vehicle battery systems (MEVBS),” J. Therm. Anal. Calorim., pp. 1–17, 2020. DOI: 10.1007/s10973-020-09606-x.
  • A. Afzal, A. D. Mohammed Samee, R. K. Abdul Razak and M. K. Ramis, “Effect of spacing on thermal performance characteristics of Li-ion battery cells,” J. Therm. Anal. Calorim., vol. 135, no. 3, pp. 1797–1811, 2019. DOI: 10.1007/s10973-018-7664-2.
  • F. Richter, S. Kjelstrup, P. J. S. Vie and O. S. Burheim, “Thermal conductivity and internal temperature profiles of Li-ion secondary batteries,” J. Power Sources, vol. 359, pp. 592–600, 2017. DOI: 10.1016/j.jpowsour.2017.05.045.
  • U. Ghia, K. N. Ghia and C. T. Shin, “High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method,” J. Comput. Phys., vol. 48, no. 3, pp. 387–411, 1982. DOI: 10.1016/0021-9991. (82)90058-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.