Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 8
2,438
Views
54
CrossRef citations to date
0
Altmetric
Original Articles

Flow and thermal transport characteristics of Triply-Periodic Minimal Surface (TPMS)-based gyroid and Schwarz-P cellular materials

&
Pages 553-569 | Received 02 Nov 2020, Accepted 06 Dec 2020, Published online: 21 Jan 2021

References

  • C. Y. Zhao, “Review on thermal transport in high porosity cellular metal foams with open cells,” Int. J. Heat Mass Transf., vol. 55, no. 13–14, pp. 3618–3632, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.017.
  • K. Boomsma, D. Poulikakos, and F. Zwick, “Metal foams as compact high performance heat exchangers,” Mech. Mater., vol. 35, no. 12, pp. 1161–1176, 2003. DOI: 10.1016/j.mechmat.2003.02.001.
  • P. Singh, K. Nithyanandam, M. Zhang, and R. L. Mahajan, “The effect of metal foam thickness on jet array impingement heat transfer in high-porosity aluminum foams,” J. Heat Transfer, vol. 142, no. 5, pp. 052301, 2020. DOI: 10.1115/1.4045640.
  • S. Krishnan, J. Y. Murthy, and S. V. Garimella, “Direct simulation of transport in open-cell metal foam,” J. Heat Transfer, vol. 128, no. 8, pp. 793–799, 2006, DOI: 10.1115/1.2227038.
  • Y. W. Kwon, R. E. Cooke, and C. Park, “Representative unit-cell models for open-cell metal foams with or without elastic filler,” Mater. Sci. Eng. A, vol. 343, no. 1–2, pp. 63–70, 2003. DOI: 10.1016/S0921-5093(02)00360-X.
  • K. Boomsma and D. Poulikakos, “On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam,” Int. J. Heat Mass Transf., vol. 44, no. 4, pp. 827–836, 2001. DOI: 10.1016/S0017-9310(00)00123-X.
  • X. Xiao, P. Zhang, and M. Li, “Preparation and thermal characterization of paraffin/metal foam composite phase change material,” Appl. Energy, vol. 112, pp. 1357–1366, 2013. DOI: 10.1016/j.apenergy.2013.04.050.
  • C. Y. Zhao, T. J. Lu, and H. P. Hodson, “Natural convection in metal foams with open cells,” Int. J. Heat Mass Transf., vol. 48, no. 12, pp. 2452–2463, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.01.002.
  • V. S. Sambamurthy, S. Madhavan, P. Singh, and S. V. Ekkad, “Array jet impingement on high porosity thin metal foams: Effect of foam height, pore-density and spent air crossflow scheme on flow distribution and heat transfer,” J. Heat Transfer, vol. 142, no. 11, pp. 112301, 2020. DOI: 10.1115/1.4047560.
  • P. Singh, K. Nithyanandam, and R. L. Mahajan, “An experimental and numerical investigation of forced convection in high porosity aluminum foams subjected to jet array impingement in channel-flow,” Int. J. Heat Mass Transf., vol. 149, pp. 119107, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119107.
  • P. Singh, M. Zhang, J. Pandit, and R. L. Mahajan, “Array jet impingement onto high porosity thin metal foams at zero jet-to-foam spacing,” presented at the ASME Int. Mech. Eng. Congr. Expo. Proc., Pittsburgh, PA, Nov. 9–15, 2018. DOI: 10.1115/imece2018-87915.
  • P. Singh, M. Zhang, and R. L. Mahajan, “Effect of metal foam thickness and pore density on array jet impingement heat transfer,” presented at the ASME Int. Mech. Eng. Congr. Expo. Proc., Salt Lake, UT, Jan. 21, 2019. DOI: 10.1115/IMECE2019-11591.
  • S. Madhavan, P. Singh, and S. V. Ekkad, “Experimental investigation of heat transfer enhancement through array jet impingement on various configurations of high porosity thin metal foams,” presented at the ASME Int. Mech. Eng. Congr. Expo. Proc., Pittsburgh, PA, Nov. 9–15, 2018. DOI: 10.1115/imece2018-86432.
  • S. Madhavan, P. Singh, and S. Ekkad, “Jet impingement heat transfer enhancement by packing high-porosity thin metal foams between jet exit plane and target surface,” J. Therm. Sci. Eng. Appl., vol. 11, no. 6, pp. 061016, 2019. DOI: 10.1115/1.4043470.
  • T. Tancogne-Dejean and D. Mohr, “Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams,” Int. J. Mech. Sci., vol. 141, pp. 101–116, 2018. DOI: 10.1016/j.ijmecsci.2018.03.027.
  • P. Ekade and S. Krishnan, “Fluid flow and heat transfer characteristics of octet truss lattice geometry,” Int. J. Therm. Sci., vol. 137, pp. 253–261, 2019. DOI: 10.1016/j.ijthermalsci.2018.11.031.
  • J. Broughton and Y. Joshi, “Comparison of single-phase convection in additive manufactured versus traditional metal foams,” J. Heat Transfer, vol. 142, no. 8, pp. 082201, 2020. DOI: 10.1115/1.4046972.
  • O. Al-Ketan et al, “Microarchitected stretching-dominated mechanical metamaterials with minimal surface topologies,” Adv. Eng. Mater., vol. 20, no. 9, pp. 1800029, 2018. DOI: 10.1002/adem.201800029.
  • A. Chaudhari, P. Ekade, and S. Krishnan, “Experimental investigation of heat transfer and fluid flow in octet-truss lattice geometry,” Int. J. Therm. Sci., vol. 143, pp. 64–75, 2019. DOI: 10.1016/j.ijthermalsci.2019.05.003.
  • J. Y. Ho, K. C. Leong, and T. N. Wong, “Additively-manufactured metallic porous lattice heat exchangers for air-side heat transfer enhancement,” Int. J. Heat Mass Transf., vol. 150, pp. 119262, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119262.
  • F. S. L. Bobbert et al., “Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties,” Acta Biomater., vol. 53, pp. 572–584, 2017. DOI: 10.1016/j.actbio.2017.02.024.
  • J. Shi et al., “A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering,” Sci. Rep., vol. 8, pp. 7395, 2018. DOI: 10.1038/s41598-018-25750-9.
  • D. W. Abueidda et al., “Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures,” Mater. Des., vol. 122, pp. 255–267, 2017. DOI: 10.1016/j.matdes.2017.03.018.
  • O. Al-Ketan, D. W. Lee, R. Rowshan, and R. K. Abu Al-Rub, “Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties,” J. Mech. Behav. Biomed. Mater., vol. 102, pp. 103520, 2020. DOI: 10.1016/j.jmbbm.2019.103520.
  • D. W. Abueidda et al., “Mechanical properties of 3D printed polymeric gyroid cellular structures: Experimental and finite element study,” Mater. Des., vol. 165, pp. 107597, 2019. DOI: 10.1016/j.matdes.2019.107597.
  • R. Ambu and A. E. Morabito, “Porous scaffold design based on minimal surfaces: Development and assessment of variable architectures,” Symmetry (Basel), vol. 10, no. 9, pp. 361, 2018. DOI: 10.3390/sym10090361.
  • J. Santos, T. Pires, B. P. Gouveia, A. P. G. Castro, and P. R. Fernandes, “On the permeability of TPMS scaffolds,” J. Mech. Behav. Biomed. Mater., vol. 110, pp. 103932, 2020. DOI: 10.1016/j.jmbbm.2020.103932.
  • D. Ali, M. Ozalp, S. B. G. Blanquer, and S. Onel, “Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis,” Eur. J. Mech. B/Fluids, vol. 79, pp. 376–385, 2020. DOI: 10.1016/j.euromechflu.2019.09.015.
  • A. P. G. Castro, T. Pires, J. E. Santos, B. P. Gouveia, and P. R. Fernandes, “Permeability versus design in TPMS scaffolds,” Materials (Basel), vol. 12, no. 8, pp. 1313, 2019. DOI: 10.3390/ma12081313.
  • H. Montazerian, M. Zhianmanesh, E. Davoodi, A. S. Milani, and M. Hoorfar, “Longitudinal and radial permeability analysis of additively manufactured porous scaffolds: Effect of pore shape and porosity,” Mater. Des., vol. 122, pp. 146–156, 2017. DOI: 10.1016/j.matdes.2017.03.006.
  • M. Zhianmanesh, M. Varmazyar, and H. Montazerian, “Fluid permeability of graded porosity scaffolds architectured with minimal surfaces,” ACS Biomater. Sci. Eng., vol. 5, no. 3, pp. 1228–1237, 2019. DOI: 10.1021/acsbiomaterials.8b01400.
  • Y. Lu, L. L. Cheng, Z. Yang, J. Li, and H. Zhu, “Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure,” PLoS One, vol. 15, no. 9, pp. e0238471, 2020. DOI: 10.1371/journal.pone.0238471.
  • S. Catchpole-Smith et al., “Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion,” Addit. Manuf., vol. 30, pp. 100846, 2019. DOI: 10.1016/j.addma.2019.100846.
  • D. W. Abueidda et al., “Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces,” Mech. Mater., vol. 95, pp. 102–115, 2016. DOI: 10.1016/j.mechmat.2016.01.004.
  • A. Mirabolghasemi, A. H. Akbarzadeh, D. Rodrigue, and D. Therriault, “Thermal conductivity of architected cellular metamaterials,” Acta Mater., vol. 174, pp. 61–80, 2019. DOI: 10.1016/j.actamat.2019.04.061.
  • W. Li, G. Yu, and Z. Yu, “Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles,” Appl. Therm. Eng., vol. 179, pp. 115686, 2020. DOI: 10.1016/j.applthermaleng.2020.115686.
  • J. Kim and D.-J. Yoo, “3D printed compact heat exchangers with mathematically defined core structures,” J. Comput. Des. Eng., vol. 7, no. 4, pp. 527–550, 2020. DOI: 10.1093/jcde/qwaa032.
  • O. Al-Ketan et al., “Forced convection computational fluid dynamics analysis of architected and three-dimensional printable heat sinks based on triply periodic minimal surfaces,” J. Therm. Sci. Eng. Appl., vol. 13, no. 2, pp. 021010, 2021. DOI: 10.1115/1.4047385.
  • K. A. Brakke, “The surface evolver,” Exp. Math., vol. 1, no. 2, pp. 141–165, 1992. DOI: 10.1080/10586458.1992.10504253.
  • M. Iasiello et al., “Numerical analysis of heat transfer and pressure drop in metal foams for different morphological models,” J. Heat Transfer, vol. 136, no. 11, pp. 112601, 2014. DOI: 10.1115/1.4028113.
  • K. Boomsma and D. Poulikakos, “The effects of compression and pore size variations on the liquid flow characteristics in metal foams,” J. Fluids Eng. Trans. ASME, vol. 124, no. 1, pp. 263–272, 2002. DOI: 10.1115/1.1429637.
  • N. Dukhan, Ö. Baǧci, and M. Özdemir, “Metal foam hydrodynamics: Flow regimes from pre-Darcy to turbulent,” Int. J. Heat Mass Transf., vol. 77, pp. 114–123, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.017.
  • D. Seguin, A. Montillet, and J. Comiti, “Experimental characterisation of flow regimes in various porous media-I: Limit of laminar flow regime,” Chem. Eng. Sci., vol. 53, no. 21, pp. 3751–3761, 1998. DOI: 10.1016/S0009-2509(98)00175-4.
  • D. Seguin, A. Montillet, J. Comiti, and F. Huet, “Experimental characterization of flow regimes in various porous media-II: Transition to turbulent regime,” Chem. Eng. Sci., vol. 53, no. 22, pp. 3897–3909, 1998. DOI: 10.1016/S0009-2509(98)80003-1.
  • M. J. Hall and J. P. Hiatt, “Measurements of pore scale flows within and exiting ceramic foams,” Exp. Fluids, vol. 20, pp. 433–440, 1996. DOI: 10.1007/BF00189382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.