Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 8
123
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of coflow velocity and coflow moisture contents on the formation and emissions of CO/NO in non-premixed impinging flames

, , , , &
Pages 594-610 | Received 03 Nov 2020, Accepted 06 Dec 2020, Published online: 19 Jan 2021

References

  • A. Alkidas, “Combustion-chamber crevices: The major source of engine-out hydrocarbon emissions under fully warmed conditions,” Prog. Energy Combust. Sci., vol. 25, no. 3, pp. 253–273, Jun. 1999. DOI: 10.1016/S0360-1285(98)00026-4.
  • A. Dreizler and B. Böhm, “Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions,” Proc. Combust. Inst., vol. 35, no. 1, pp. 37–64, 2015. DOI: 10.1016/j.proci.2014.08.014.
  • B. Yenerdag, Y. Minamoto, K. Aoki, M. Shimura, Y. Nada and M. Tanahashi, “Flame-wall interactions of lean premixed flames under elevated, rising pressure conditions,” Fuel, vol. 189, pp. 8–14, Feb. 2017. DOI: 10.1016/j.fuel.2016.10.096.
  • X. Jiang and K. H. Luo, “Combustion-induced buoyancy effects of an axisymmetric reactive plume,” P. Combust. Inst., vol. 28, no. 2, pp. 1989–1995, 2000. DOI: 10.1016/S0082-0784(00)80605-0.
  • J. Jiang, L. Jing, M. Zhu and X. Jiang, “A comparative study of instabilities in forced reacting plumes of nonpremixed flames,” J. Energy Inst., vol. 89, no. 3, pp. 456–467, Mar. 2016. DOI: 10.1016/j.joei.2015.02.008.
  • H. Thomas and S. Rainer, “Effect of different wall materials and thermal-barrier coatings on the flame-wall interaction of laminar premixed methane and propane flames,” Int. J. Heat Fluid Flow, vol. 69, pp. 95–105, Feb. 2018. DOI: 10.1016/j.ijheatfluidflow.2017.12.004.
  • J. Y. Jiang, T. Q. Wu, H. X. Li, M. Sun and B. Zhang, “Analysis of turbulent transport characteristic in hydrogen diffusion flames using direct numerical simulation,” Numer. Heat Trans. A-App., vol. 78, no. 4, pp. 125–139, Jun. 2020. DOI: 10.1080/10407782.2020.1784678.
  • S. L. Wei, F. H. Wang, X. Y. Leng, X. Liu and K. P. Ji, “Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines,” Energy Convers. Manage., vol. 75, pp. 184–190, Nov. 2013. DOI: 10.1016/j.enconman.2013.05.044.
  • A. M. Elbaz and W. L. Roberts, “Stability and structure of inverse swirl diffusion flames with weak to strong swirl,” Exp. Therm. Fluid Sci., vol. 112, pp. 109989, Apr. 2020. DOI: 10.1016/j.expthermflusci.2019.109989.
  • C. Saha, R. Ganguly and A. Datta, “Heat transfer and emission characteristics of impinging rich methane and ethylene jet flames,” Exp. Heat Transfer, vol. 21, no. 3, pp. 169–187, Nov. 2008. DOI: 10.1080/08916150802072834.
  • H. B. Li, H. S. Zhen, C. W. Leung and C. S. Cheung, “Effects of plate temperature on heat transfer and emissions of impinging flames,” Int. J. Heat Mass Transf., vol. 53, no. 19–20, pp. 4176–4184, Sep. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.040.
  • P. F. Li, B. B. Dally, J. C. Mi and F. F. Wang, “MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace,” Combust. Flame, vol. 160, no. 5, pp. 933–946, May 2013. DOI: 10.1016/j.combustflame.2013.01.024.
  • Z. Meng, C. Wang, X. Wang, Y. Chen, W. Wu and H. Li, “Simultaneous removal of SO2 and NOx from flue gas using (NH4)2S2O3/steel slag slurry combined with ozone oxidation,” Fuel, vol. 255, no. 1, pp. 115760, Jul. 2019. DOI: 10.1016/j.fuel.2019.115760.
  • A. R. B. Pereira, A. Á. B. Santos, L. L. N. Guarieiro, J. B. H. Cavalcante and J. P. D. Anjos, “Experimental evaluation of CO, NOx, formaldehyde and acetaldehyde emission rates in a combustion chamber with OEC under acoustic excitation,” Energy Rep., vol. 5, pp. 1163–1171, Nov. 2019. DOI: 10.1016/j.egyr.2019.08.010.
  • Z. L. Wei, H. S. Zhen, C. Leung, C. S. Cheung and Z. H. Huang, “Effects of H2 addition on the formation and emissions of CO/NO2/NOx in the laminar premixed biogas-hydrogen flame undergoing the flame-wall interaction,” Fuel, vol. 259, no. 1, pp. 116257, Jan. 2020. DOI: 10.1016/j.fuel.2019.116257.
  • P. Rajpara, R. Shah and J. Banerjee, “Effect of hydrogen addition on combustion and emission characteristics of methane fuelled upward swirl can combustor,” Int. J.Hydrogen Energy, vol. 43, no. 36, pp. 17505–17519, Sep. 2018. DOI: 10.1016/j.ijhydene.2018.07.111.
  • Z. L. Wei, H. S. Zhen, C. Leung, C. S. Cheung and Z. H. Huang, “Formations and emissions of CO/NO2/NOx in the laminar premixed biogas-hydrogen flame undergoing the flame-wall interaction: Effects of the variable CO2 proportion,” Fuel, vol. 276, no. 15, pp. 118096, Sep. 2020. DOI: 10.1016/j.fuel.2020.118096.
  • L. Li, L. B. Duan, S. A. Tong and E. J. Anthony, “Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres,” Fuel Process. Technol., vol. 186, pp. 8–17, Apr. 2019. DOI: 10.1016/j.fuproc.2018.12.007.
  • F. Scala, “Attrition during steam gasification of lignite char in a fluidized bed reactor,” Fuel Process. Technol., vol. 141, no. 1, pp. 38–43, Jan. 2016. DOI: 10.1016/j.fuproc.2015.03.031.
  • S. Lahane and K. A. Subramanian, “Impact of nozzle holes configuration on fuel spray, wall impingement and NOx emission of a diesel engine for biodiesel-diesel blend (B20),” Appl. Therm. Eng., vol. 64, no. 1–2, pp. 307–314, Mar. 2014. DOI: 10.1016/j.applthermaleng.2013.12.048.
  • K. P. Cheong, P. F. Li, F. F. Wang and J. C. Mi, “Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions,” Energy, vol. 124, no. 1, pp. 652–664, Apr. 2017. DOI: 10.1016/j.energy.2017.02.083.
  • W. P. Adamczyk, et al., “CFD modeling and thermodynamic analysis of a concept of a MILD-OXY combustion large scale pulverized coal boiler,” Energy, vol. 140, no. 1, pp. 1305–1315, Dec. 2017. DOI: 10.1016/j.energy.2017.03.130.
  • X. L. Wei, Y. Wang, D. F. Liu and H. Z. Sheng, “Influence of HCl on CO and NO emissions in combustion,” Fuel, vol. 88, no. 10, pp. 1998–2003, Oct. 2009. DOI: 10.1016/j.fuel.2009.03.009.
  • S. Julien, C. M. H. Brereton, C. J. Lim, J. R. Grace and E. J. Anthony, “The effect of halides on emissions from circulating fluidized bed combustion of fossil fuels,” Fuel, vol. 75, no. 14, pp. 1655–1663, Nov. 1996. DOI: 10.1016/S0016-2361(96)00135-4.
  • A. D. Lawrence, J. Bu and P. Gokulakrishnan, “The interactions between SO2, NOx, HCl and Ca in a bench-scale fluidized combustor,” J. Inst. Energy, vol. 72, no. 491, pp. 253–273, Jun 1999. DOI: 10.1016/S0378-7753(99)00054-3.
  • D. Hong and X. Guo, “A reactive molecular dynamics study of CH4 combustion in O2/CO2/H2O environments,” Fuel Process. Technol., vol. 167, pp. 416–424, Dec. 2017. DOI: 10.1016/j.fuproc.2017.07.024.
  • Z. Z. Wang, Y. Y. Zhao, R. Sun, Y. P. Li, X. H. Ren and J. Xu, “Effects of reaction condition on NO emission characteristic, surface behavior and microstructure of demineralized char during O2/H2O combustion process,” Fuel, vol. 253, pp. 1424–1435, Oct. 2019. DOI: 10.1016/j.fuel.2019.05.119.
  • S. Li, X. L. Wei and X. F. Guo, “Effect of H2O vapor on NO reduction by CO: Experimental and kinetic modeling study,” Energy Fuels, vol. 26, no. 7, pp. 4277–4283, Jul. 2012. DOI: 10.1021/ef300580y.
  • Y. J. Tu, M. C. Xu, D. Z. Zhou, Q. X. Wang, W. M. Yang and H. Liu, “CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres,” Appl. Energy, vol. 240, no. 15, pp. 1003–1013, Apr. 2019. DOI: 10.1016/j.apenergy.2019.02.046.
  • L. J. Wang, D. Liu, Z. Z. Yang, H. L. Li, L. Y. Wei and Q. C. Li, “Effect of H2 addition on combustion and exhaust emissions in a heavy-duty diesel engine with EGR,” Int. J. Hydrogen Energy, vol. 43, no. 50, pp. 22658–22668, Dec. 2018. DOI: 10.1016/j.ijhydene.2018.10.104.
  • J. Burguburu, G. Cabot, B. Renou, A. M. Boukhalfa and M. Cazalens, “Effects of H2 enrichment on flame stability and pollutant emissions for a kerosene/air swirled flame with an aeronautical fuel injector,” Proc. Combust. Inst., vol. 33, no. 2, pp. 2927–2935, 2011. DOI: 10.1016/j.proci.2010.07.019.
  • Y. J. Yahagi, M. Sekiguti and K. Suzuki, “Flow structure and flame stability in a micro can combustor with a baffle plate,” Appl. Therm. Eng., vol. 27, no. 4, pp. 788–794, 2007. Mar. DOI: 10.1016/j.applthermaleng.2006.10.019.
  • Z. W. Zhang, et al., “Effect of H2O/CO2 mixture on heat transfer characteristics of pulverized coal MILD-oxy combustion,” Fuel Process. Technol., vol. 184, pp. 27–35, Feb. 2019. DOI: 10.1016/j.fuproc.2018.11.011.
  • W. P. Adamczyk, et al., “Application of LES-CFD for predicting pulverized-coal working conditions after installation of NOx control system,” Energy, vol. 160, pp. 693–709, Oct. 2018. DOI: 10.1016/j.energy.2018.07.031.
  • R. Payri, B. Tormos, J. Gimenio and G. Bracho, “The potential of Large Eddy Simulation (LES) code for the modeling of flow in diesel injectors,” Math. Comput. Model., vol. 52, no. 7–8, pp. 1151–1160, Oct. 2010. DOI: 10.1016/j.mcm.2010.02.033.
  • Y. J. Tu, et al., “Numerical study of H2O addition effects on pulverized coal oxy-MILD combustion,” Fuel Process. Technol., vol. 138, pp. 252–262, Oct. 2015. DOI: 10.1016/j.fuproc.2015.05.031.
  • C. D. Pierce and P. Moin, “Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion,” J. Fluid Mech., vol. 504, pp. 73–97, Apr. 2004. DOI: 10.1017/S0022112004008213.
  • P. G, et al., GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/ 1999.
  • D. J. Phares, G. T. Smedley and R. Flagan, “The wall shear stress produced by the normal impingement of a jet on a flat surface,” J. Fluid Mech., vol. 418, pp. 351–375, Sep. 2000. DOI: 10.1017/S002211200000121X.
  • S. Murugan, R. F. Huang and C. M. Hsu, “Effect of annular flow pulsation on flow and mixing characteristics of double concentric jets at low central jet Reynolds number,” Int. J. Mech. Sci., vol. 186, pp. 105907, Nov. 2020. DOI: 10.1016/j.ijmecsci.2020.105907.
  • P. Glarborg, J. A. Miller and R. J. Kee, “Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors,” Combust. Flame, vol. 65, no. 2, pp. 177–202, Aug. 1986. DOI: 10.1016/0010-2180(86)90018-0.
  • M. Shim, K. Noh and W. Yoon, “Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence,” Acta Astronaut., vol. 147, pp. 127–132, Jun. 2018. DOI: 10.1016/j.actaastro.2018.03.053.
  • S. W. Yoo, C. K. Law and S. D. Tse, “Chemiluminescent OH* and CH* flame structure and aerodynamic scaling of weakly buoyant, nearly spherical diffusion flames,” Proc Combust. Inst., vol. 29, no. 2, pp. 1663–1670, 2002. DOI: 10.1016/S1540-7489(02)80204-8.
  • A. Fuentes, G. Legros, A. Claverie, P. Joulain, J. P. Vantelon and J. L. Torero, “Interactions between soot and CH* in a laminar boundary layer type diffusion flame in microgravity,” Proc. Combust. Inst., vol. 31, no. 2, pp. 2685–2692, Jan. 2007. DOI: 10.1016/j.proci.2006.08.031.
  • Y. L. Xie and Q. Z. Li, “Effect of the initial pressures on evolution of intrinsically unstable hydrogen/air premixed flame fronts,” Int. J. Hydrogen Energy, vol. 44, no. 31, pp. 17030–17040, Jun. 2019. DOI: 10.1016/j.ijhydene.2019.04.220.
  • Y. H. Zhai, S. Li, W. P. Yan, X. L. Wei, L. Y. Zhang and Y. T. Wang, “Effects of water vapor and temperature on NOx and CO emissions during converter gas combustion,” Fuel, vol. 256, pp. 115914, Nov. 2019. DOI: 10.1016/j.fuel.2019.115914.
  • J. Park, K. Seung-Gon, L. Kee-Man and K. T. Kwon, “Chemical effect of diluents on flame structure and NO emission characteristic in methane-air counterflow diffusion flame,” Int. J. Energy Res., vol. 26, no. 13, pp. 1141–1160, Oct. 2002. DOI: 10.1002/er.841.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.