Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 8
440
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

A novel stochastic approach to study water droplet/flame interaction of water mist systems

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 570-593 | Received 03 Nov 2020, Accepted 06 Dec 2020, Published online: 27 Jan 2021

References

  • “The Montreal protocol on substances that deplete the ozone layer.” Available: https://ozone.unep.org/treaties/montreal-protocol. Accessed: Apr. 7, 2020.
  • V. Novozhilov, “Fire suppression studies,” Therm. Sci., vol. 11, no. 2, pp. 161–180, Jan. 2007. DOI: 10.2298/TSCI0702161N.
  • C. Theobald, S. A. Westley and S. Whitbread, “Thermal response of sprinklers part II. Characteristics and test methods,” Fire Saf. J., vol. 13, no. 2–3, pp. 99–114, May. 1988. DOI: 10.1016/0379-7112(88)90006-9.
  • S. L. Lin, W. K. Chow, Y. K. Woo, D. F. Szeto and C. Su, “Effect of heat collector plate on thermal sensitivity of sprinkler heads in large terminal Halls,” J. Build. Eng., vol. 25, pp. 100787, Sep. 2019. DOI: 10.1016/j.jobe.2019.100787.
  • J. F. Widmann, “Phase Doppler interferometry measurements in water sprays produced by residential fire sprinklers,” Fire Saf. J., vol. 36, no. 6, pp. 545–567, Sep. 2001. DOI: 10.1016/S0379-7112(01)00009-1.
  • X. Y. Zhou and H. Z. Yu, “Experimental investigation of spray formation as affected by sprinkler geometry,” Fire Saf. J., vol. 46, no. 3, pp. 140–150, Apr. 2011. DOI: 10.1016/j.firesaf.2011.01.003.
  • P. Z. Yang, T. Liu and X. A. Qin, “Experimental and numerical study on water mist suppression system on room fire,” Build. Environ., vol. 45, no. 10, pp. 2309–2316, Oct. 2010. DOI: 10.1016/j.buildenv.2010.04.017.
  • M. Gupta et al., “Experimental evaluation of fire suppression characteristics of twin fluid water mist system,” Fire Saf. J., vol. 54, pp. 130–142, Nov. 2012. DOI: 10.1016/j.firesaf.2012.08.007.
  • H. Liu et al., “Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems,” J. Build. Eng., vol. 28, pp. 100999, Mar. 2020. DOI: 10.1016/j.jobe.2019.100999.
  • M. Arvidson, “Large-scale water spray and water mist fire suppression system tests for the protection of Ro–Ro cargo decks on ships,” Fire Technol., vol. 50, no. 3, pp. 589–610, May. 2014. DOI: 10.1007/s10694-012-0312-7.
  • J. H. Zhao, Y. Gao and H. M. Wu, “Numerical simulation and research of pool fire suppressed by water mist in the engineroom of a ship,” Appl. Mech. Mater., vol. 29–32, pp. 651–657, Aug. 2010. DOI: 10.4028/www.scientific.net/AMM.29-32.651.www.scientific.net/AMM.29-32.651.
  • S. C. Kim and H. S. Ryou, “An experimental and numerical study on fire suppression using a water mist in an enclosure,” Build. Environ., vol. 38, no. 11, pp. 1309–1316, Nov. 2003. DOI: 10.1016/S0360-1323(03)00134-3.
  • X. Wang, Q. Tan, Z. Wang, X. Kong and H. Cong, “Preliminary study on fire protection of window glass by water mist curtain,” Int. J. Therm. Sci., vol. 125, pp. 44–51, Mar. 2018. DOI: 10.1016/j.ijthermalsci.2017.11.013.
  • J. Xu et al., “Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires,” Appl. Therm. Eng., vol. 171, pp. 115076, May. 2020. DOI: 10.1016/j.applthermaleng.2020.115076.
  • Z. Tianwei, L. Hao, H. Zhiyue, D. Zhiming and W. Yong, “Active substances study in fire extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics,” Appl. Therm. Eng., vol. 122, pp. 429–438, Jul. 2017. DOI: 10.1016/j.applthermaleng.2017.05.053.
  • Z.-F. Zhou, W.-Y. Li, B. Chen and G.-X. Wang, “A 3rd-order polynomial temperature profile model for the heating and evaporation of moving droplets,” Appl. Therm. Eng., vol. 110, pp. 162–170, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.08.160.
  • S. Tonini and G. E. Cossali, “Modelling of heat and mass transfer from spheroidal drops with non-uniform surface temperature,” Int. J. Heat Mass Transfer, vol. 121, pp. 747–758, Jun. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.040.
  • S. C. Yang et al., “Evaporation and dynamic characteristics of a high-speed droplet under transcritical conditions,” Adv. Mech. Eng., vol. 8, no. 4, pp. 168781401664295, Apr. 2016. DOI: 10.1177/1687814016642953.
  • V. Deprédurand, G. Castanet and F. Lemoine, “Heat and mass transfer in evaporating droplets in interaction: influence of the fuel,” Int. J. Heat Mass Transfer, vol. 53, no. 17–18, pp. 3495–3502, Aug. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.04.010.
  • R. Sureshkumar, S. R. Kale and P. L. Dhar, “Heat and mass transfer processes between a water spray and ambient air - I. Experimental data,” Appl. Therm. Eng., vol. 28, no. 5–6, pp. 349–360, Apr. 2008. DOI: 10.1016/j.applthermaleng.2007.09.010.
  • R. Sureshkumar, S. R. Kale and P. L. Dhar, “Heat and mass transfer processes between a water spray and ambient air - II. Simulations,” Appl. Therm. Eng., vol. 28, no. 5–6, pp. 361–371, Apr. 2008. DOI: 10.1016/j.applthermaleng.2007.09.015.
  • X. Ni and W. K. Chow, “Performance evaluation of water mist with bromofluoropropene in suppressing gasoline pool fires,” Appl. Therm. Eng., vol. 31, no. 17–18, pp. 3864–3870, Dec. 2011. DOI: 10.1016/j.applthermaleng.2011.07.034.
  • P. E. Santangelo and P. Tartarini, “Full-scale experiments of fire suppression in high-hazard storages: a temperature-based analysis of water-mist systems,” Appl. Therm. Eng., vol. 45–46, pp. 99–107, Dec. 2012. DOI: 10.1016/j.applthermaleng.2012.04.011.
  • P. H. Zhang, X. Tang, X. L. Tian, C. Liu and M. H. Zhong, “Experimental study on the interaction between fire and water mist in long and narrow spaces,” Appl. Therm. Eng., vol. 94, pp. 706–714, Feb. 2016. DOI: 10.1016/j.applthermaleng.2015.10.110.
  • L. A. Dombrovsky, S. Dembele and J. X. Wen, “A simplified model for the shielding of fire thermal radiation by water mists,” Int. J. Heat Mass Transfer, vol. 96, pp. 199–209, May. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.028.
  • A. O. Zhdanova, R. S. Volkov, I. S. Voytkov, K. Y. Osipov and G. V. Kuznetsov, “Suppression of forest fuel thermolysis by water mist,” Int. J. Heat Mass Transfer, vol. 126, pp. 703–714, Nov. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.085.
  • G. Heidarinejad, M. R. A. Moghaddam and H. Pasdarshahri, “Enhancing COP of an air-cooled chiller with integrating a water mist system to its condenser: investigating the effect of spray nozzle orientation,” Int. J. Therm. Sci., vol. 137, pp. 508–525, Mar. 2019. DOI: 10.1016/j.ijthermalsci.2018.12.013.
  • J. P. White et al., “Water mist suppression of a turbulent line fire,” Fire Saf. J., vol. 91, pp. 705–713, Jul. 2017. DOI: 10.1016/j.firesaf.2017.03.014.
  • C. T. Crowe, M. P. Sharma and D. E. Stock, “The particle-source-in cell (PSI-CELL) model for gas-droplet flows,” J. Fluids Eng., vol. 99, no. 2, pp. 325–332, Jun. 1977. DOI: 10.1115/1.3448756.
  • L. Yinshui, J. Zhuo, W. Dan and L. Xiaohui, “Experimental research on the water mist fire suppression performance in an enclosed space by changing the characteristics of nozzles,” Exp. Therm. Fluid Sci., vol. 52, pp. 174–181, Jan. 2014. DOI: 10.1016/j.expthermflusci.2013.09.008.
  • B. Yao, B. H. Cong, J. Qin and W. K. Chow, “Experimental study of suppressing Poly(methyl methacrylate) fires using water mists,” Fire Saf. J., vol. 47, pp. 32–39, Jan. 2012. DOI: 10.1016/j.firesaf.2011.08.004.
  • P. E. Santangelo et al., “Suppression effectiveness of water-mist sprays on accelerated wood-crib fires,” Fire Saf. J., vol. 70, pp. 98–111, Nov. 2014. DOI: 10.1016/j.firesaf.2014.08.012.
  • A. C. Y. Yuen et al., “Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials,” J. Fire Sci., vol. 36, no. 6, pp. 494–517, Sep. 2018. DOI: 10.1177/0734904118800907.
  • B. Lin et al., “MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions,” J. Hazard Mater., vol. 381, pp. 120952, Jan. 2020. DOI: 10.1016/j.jhazmat.2019.120952.
  • T. B. Y. Chen et al., “Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion,” Int. J. Heat Mass Transfer, vol. 125, pp. 310–322, Oct. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.093.
  • A. C. Y. Yuen et al., “Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites,” Composit. B. Eng., vol. 182, pp. 107619, Feb. 2020. DOI: 10.1016/j.compositesb.2019.107619.
  • A. C. Y. Yuen et al., “Numerical study of the development and angular speed of a small-scale fire whirl,” J. Comput. Sci., vol. 27, pp. 21–34, Jul. 2018. DOI: 10.1016/j.jocs.2018.04.021.
  • C. Wang et al., “Influence of eddy-generation mechanism on the characteristic of on-source fire whirl,” Appl. Sci., vol. 9, no. 19, pp. 3989, Sep. 2019. DOI: 10.3390/app9193989.
  • Q. Chen et al., “Investigation of door width towards flame tilting behaviours and combustion species in compartment fire scenarios using large eddy simulation,” Int. J. Heat Mass Transfer, vol. 150, pp. 119373, Apr. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.
  • A. C. Y. Yuen et al., “Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room,” Int. J. Heat Mass Transfer, vol. 115, pp. 717–729, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.074.
  • F. Nicoud and F. Ducros, “Subgrid-scale stress modelling based on the square of the velocity gradient tensor,” Flow, Turbul. Combust., vol. 62, no. 3, pp. 183–200, Sep. 1999. DOI: 10.1023/A:1009995426001.
  • G. H. Yeoh and J. Tu, Computational Techniques for Multiphase Flows. Amsterdam, Netherlands: Elsevier, 2009.
  • R. S. Miller, K. Harstad and J. Bellan, “Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations,” Int. J. Multiphase Flow, vol. 24, no. 6, pp. 1025–1055, Sep. 1998. DOI: 10.1016/S0301-9322(98)00028-7.
  • S. S. Sazhin, “Advanced models of fuel droplet heating and evaporation,” Prog. Energ. Combust., vol. 32, no. 2, pp. 162–214, Jan. 2006. DOI: 10.1016/j.pecs.2005.11.001.
  • D. V. Antonov, O. V. Vysokomornaya, G. V. Kuznetsov and M. V. Piskunov, “Modeling the water droplet evaporation processes with regard to convection, conduction and thermal radiation,” J. Eng. Thermophys., vol. 27, no. 2, pp. 145–154, May. 2018. DOI: 10.1134/S1810232818020029.
  • J. L. Consalvi, B. Porterie and J. C. Loraud, “Dynamic and radiative aspects of fire-water mist interactions,” Combust. Sci. Technol., vol. 176, no. 5–6, pp. 721–752, Aug. 2004. DOI: 10.1080/00102200490428062.
  • R. Mehaddi et al., “Use of a water mist for smoke confinement and radiation shielding in case of fire during tunnel construction,” Int. J. Therm. Sci., vol. 148, pp. 106156, Feb. 2020. DOI: 10.1016/j.ijthermalsci.2019.106156.
  • G. Parent et al., “Radiative shielding effect due to different water sprays used in a real scale application,” Int. J. Therm. Sci., vol. 105, pp. 174–181, 2016. DOI: 10.1016/j.ijthermalsci.2016.02.008.
  • A. C. Y. Yuen, G. H. Yeoh, V. Timchenko, S. C. P. Cheung and T. J. Barber, “Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment,” Int. J. Heat Mass Transfer, vol. 96, pp. 171–188, May. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.026.
  • A. C. Y. Yuen et al., “On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions,” Int. J. Comput. Fluid Dyn., vol. 31, no. 6–8, pp. 324–337, Aug. 2017. DOI: 10.1080/10618562.2017.1357809.
  • W. P. Jones, Models for Turbulent Flows with Variable Density and Combustion. United States: Hemispere Publishing Corp., 1980.
  • C. Beihua, L. Guangxuan and Z. Huang, “Extinction limit of diesel pool fires suppressed by water mist,” J. Fire Sci., vol. 27, no. 1, pp. 5–26, Jan. 2009. DOI: 10.1177/0734904108095337.
  • K. B. McGrattan, H. R. Baum and R. G. Rehm, “Large eddy simulations of smoke movement,” Fire Saf. J., vol. 30, no. 2, pp. 161–178, Mar. 1998. DOI: 10.1016/S0379-7112(97)00041-6.
  • S. S. Yoon, et al., “Numerical modeling and experimental measurements of a high speed solid-cone water spray for use in fire suppression applications,” Int. J. Multiphase Flow, vol. 30, no. 11, pp. 1369–1388, Nov. 2004. DOI: 10.1016/j.ijmultiphaseflow.2004.07.006.
  • H. Montazeri, B. Blocken and J. L. M. Hensen, “Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis,” Build. Environ., vol. 83, pp. 129–141, Jan. 2015. DOI: 10.1016/j.buildenv.2014.03.022.
  • N. F. P. Association, NFPA 750 Standard for Water Mist Fire Suppression Systems. Quincy, MA: NFPA, 2000.
  • Z. Hu, Y. Utiskul, J. G. Quintiere and A. Trouve, “Towards large eddy simulations of flame extinction and carbon monoxide emission in compartment fires,” Proc. Combust. Inst., vol. 31, no. 2, pp. 2537–2545, Jan. 2007. DOI: 10.1016/j.proci.2006.08.053.
  • P. Narayanan, H. R. Baum and A. Trouvé, “Effect of soot addition on extinction limits of luminous laminar counterflow diffusion flames,” Proc. Combust. Inst., vol. 33, no. 2, pp. 2539–2546, Dec. 2011. DOI: 10.1016/j.proci.2010.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.