Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 9
443
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the two-phase flow, heat transfer, and instability characteristics in a loop thermosyphon

, , , &
Pages 656-680 | Received 16 Nov 2020, Accepted 25 Jan 2021, Published online: 12 Feb 2021

References

  • H. Honda, Z. G. Zhang and N. Takata, “Flow and heat transfer characteristics of a natural circulation evaporative cooling system for electronic components,” J. Electron. Packag., vol. 126, no. 3, pp. 317–324, Sep. 2004. DOI: 10.1115/1.1772412.
  • M. Na, J. Jeon, H. Kwak and S. Nam, “Experimental study on closed-loop two-phase thermosyphon devices for cooling MCMs,” Heat Transf. Eng., vol. 22, no. 2, pp. 29–39, Oct. 2001. DOI: 10.1080/01457630116920.
  • W. Kim, K. Song and Y. Lee, “Design of a two-phase loop thermosyphon for telecommunications system (I),” KSME Int. J., vol. 12, no. 5, pp. 926–941, Sep. 1998. DOI: 10.1007/BF02945560.
  • T. Li, Y. Jiang, Z. Li, Q. Liu and D. Tang, “Loop thermosyphon as a feasible cooling method for the stators of gas turbine,” Appl. Therm. Eng., vol. 109, pp. 449–453, Oct. 2016. DOI: 10.1016/j.applthermaleng.2016.08.087.
  • B. Chen, Y. Chang, W. Lee and S. Chen, “Long-term thermal performance of a two-phase thermosyphon solar water heater,” Sol. Energy, vol. 83, no. 7, pp. 1048–1055, Jul. 2009. DOI: 10.1016/j.solener.2009.01.007.
  • M. Esen and H. Esen, “Experimental investigation of a two-phase closed thermosyphon solar water heater,” Sol. Energy, vol. 79, no. 5, pp. 459–468, Nov. 2005. DOI: 10.1016/j.solener.2005.01.001.
  • P. Koffi, H. Andoh, P. Gbaha, S. Touré and G. Ado, “Theoretical and experimental study of solar water heater with internal exchanger using thermosyphon system,” Energy Convers. Manage., vol. 49, no. 8, pp. 2279–2290, Aug. 2008. DOI: 10.1016/j.enconman.2008.01.032.
  • D. Jafari, A. Franco, S. Filippeschi and P. Marco, “Two-phase closed thermosyphons: a review of studies and solar applications,” Renew. Sustain. Energy Rev., vol. 53, pp. 575–593, Jan. 2016. DOI: 10.1016/j.rser.2015.09.002.
  • L. Han, W. Shi, B. Wang, P. Zhang and X. Li, “Development of an integrated air conditioner with thermosyphon and the application in mobile phone base station,” Int. J. Refrig., vol. 36, no. 1, pp. 58–69, Jan. 2013. DOI: 10.1016/j.ijrefrig.2012.09.012.
  • K. Matsubara, Y. Matsudaira and I. Kourakata, “Thermosyphon loop thermal collector for low-temperature waste heat recovery,” Appl. Therm. Eng., vol. 92, pp. 261–270, Sep. 2016. DOI: 10.1016/j.applthermaleng.2015.09.004.
  • S. Panse and S. Kandlikar, “A thermosyphon loop for high heat flux removal using flow boiling of ethanol in OMM with taper,” Int. J. Heat Mass. Transf., vol. 106, pp. 546–557, Mar. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.020.
  • R. Khodabandeh and R. Furberg, “Instability, heat transfer and flow regime in a two-phase flow thermosyphon loop at different diameter evaporator channel,” Appl. Therm. Eng., vol. 30, no. 10, pp. 1107–1114, Jul. 2010. DOI: 10.1016/j.applthermaleng.2010.01.024.
  • A. Chehade, H. Louahlia-Gualous, S. L. Masson, I. Victor and N. Abouzahab-Damaj, “Experimental investigation of thermosyphon loop thermal performance,” Energy Convers. Manage., vol. 84, pp. 671–680, Aug. 2014. DOI: 10.1016/j.enconman.2014.04.092.
  • R. Khodabandeh, “Heat transfer in the evaporator of an advanced two-phase thermosyphon loop,” Int. J. Refrig., vol. 28, no. 2, pp. 190–202, Mar. 2005. DOI: 10.1016/j.ijrefrig.2004.10.006.
  • A. Alammar, R. Al-Dadah and S. Mahmoud, “Experimental investigation of the influence of the geyser boiling phenomenon on the thermal performance of a two-phase closed thermosiphon,” J. Clean. Prod., vol. 172, pp. 2531–2543, Jan. 2018. DOI: 10.1016/j.jclepro.2017.11.157.
  • J. Boure, A. Bergles and L. Tong, “Review of two-phase flow instability,” Nucl. Eng. Des., vol. 25, no. 2, pp. 165–192, Jul. 1973. DOI: 10.1016/0029-5493(73)90043-5.
  • S. Kakac and B. Bon, “A review of two-phase flow dynamic instabilities in tube boiling systems,” Int. J. Heat Mass. Transf., vol. 51, no. 3–4, pp. 399–433, Feb. 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.09.026.
  • L. Tong et al., “Visualization experiments on the geyser boiling-induced instability in vertical circular tube at low-pressures,” Ann. Nucl. Energy, vol. 77, pp. 487–497, Mar. 2015. DOI: 10.1016/j.anucene.2014.12.003.
  • A. Alammar, R. Al-Dadah and S. Mahmoud, “Effect of inclination angle and fill ratio on geyser boiling phenomena in a two-phase closed thermosyphon – Experimental investigation,” Energy Convers. Manage., vol. 156, pp. 150–166, Jan. 2018. DOI: 10.1016/j.enconman.2017.11.003.
  • C. Tecchio et al., “Geyser boiling phenomenon in two-phase closed loop-thermosyphons,” Int. J. Heat Mass. Transf., vol. 111, pp. 29–40, Mar. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.092.
  • K. Smith, R. Kempers and A. Robinson, “Confinement and vapour production rate influences in closed two-phase reflux thermosyphons part a: flow regimes,” Int. J. Heat Mass. Transf., vol. 119, pp. 907–921, Apr. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.049.
  • Y. Liu, Z. Li, Y. Li, S. Kim and Y. Jiang, “Experimental investigation of geyser boiling in a two-phase closed loop thermosyphon with high filling ratios,” Int. J. Heat Mass Transf., vol. 127, pp. 857–869, Dec. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.018.
  • Y. Liu, Z. Li, Y. Li, Y. Jiang and D. Tang, “Heat transfer and instability characteristics of a loop thermosyphon with wide range of filling ratios,” Appl. Therm. Eng., vol. 151, pp. 262–271, Mar. 2019. DOI: 10.1016/j.applthermaleng.2019.02.031).
  • Ansys Incorporation. ANSYS FLUENT Theory Guide: Version 13.0. Canonsburg, PA: Ansys Incorporation 2010.
  • J. Brackbill, D. Kothe and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, Jun. 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • W. Lee, “A pressure iteration scheme for two-phase flow modeling,” in Computational Methods for Two-Phase Flow and Particle Transport, W. Lee, Ed. Singapore: World Scientific, 2013, pp. 61–82. DOI: 10.1142/9789814460286_0004.
  • M. Knudsen and J. Partington, “The kinetic theory of gases - some modern aspects,” J. Phys. Chem., vol. 39, no. 2, pp. 307–307, Feb. 1935. DOI: 10.1021/j150362a021.
  • S. D. Schepper, G. Heynderickx and G. Marin, “Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker,” Comput. Chem. Eng., vol. 33, no. 1, pp. 122–132, Jan. 2009. DOI: 10.1016/j.compchemeng.2008.07.013.
  • H. Ganapathy et al., “Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels,” Int. J. Heat Mass. Transf., vol. 65, pp. 62–72, Oct. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.05.044.
  • T. Adrian et al., “Advances in computational fluid dynamics modeling of two phase flow in a boiling water reactor fuel assembly,” Proc. 14th Int. Conf. Nucl. Eng. ASME Digital Collection, 2006, pp. 65–72. DOI: 10.1115/ICONE14-89158.
  • A. Ioilev et al., “Advances in the modeling of cladding heat transfer and critical heat flux in boiling water reactor fuel assemblies,” Proc. NURETH-12, Pittsburgh, PA, Sept. 30-Oct. 4, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.