Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 10-12
191
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Finite element-based evaluation on the role of various shaped containers (oil saturated porous media) for entropy generation versus heating efficiency involving thermal convection with identical heating

&
Pages 681-707 | Received 18 Nov 2020, Accepted 28 Jan 2021, Published online: 08 Mar 2021

References

  • B. Wang, Y. Liu, and L. Li, “Nanofluid double diffusive natural convection in a porous cavity under multiple force fields,” Numer. Heat Transfer Part A Appl., vol. 77, no. 4, pp. 343–360, 2020. DOI: 10.1080/10407782.2019.1693195.
  • W. Wang, B. W. Li, Z. H. Rao, G. Liu, and S. M. Liao, “Two and three-dimensional simulation of natural convection flow of CuO-water in a horizontal concentric annulus considering nanoparticles’ Brownian motion,” Numer. Heat Transfer Part A Appl., vol. 76, no. 12, pp. 967–990, 2019. DOI: 10.1080/10407782.2019.1674097.
  • S. Mousavi, M. Siavashi, and M. M. Heyhat, “Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins,” Numer. Heat Transfer Part A Appl., vol. 75, no. 8, pp. 560–577, 2019. DOI: 10.1080/10407782.2019.1606634.
  • Q. Yu, Y. W. Lu, D. W. Peng, Y. T. Wu, and C. F. Ma, “Natural convection heat transfer of molten salt nanofluids around vertical array of heated horizontal cylinders,” Numer. Heat Transfer Part A Appl., vol. 74, no. 10, pp. 1666–1684, 2018. DOI: 10.1080/10407782.2018.1543919.
  • A. Tahmasebi, M. Mahdavi, and M. Ghalambaz, “Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model,” Numer. Heat Transfer Part A Appl., vol. 73, no. 4, pp. 254–276, 2018. DOI: 10.1080/10407782.2017.1422632.
  • M. T. Nguyen, A. M. Aly, and S. W. Lee, “Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method,” Numer. Heat Transfer Part A Appl., vol. 72, no. 1, pp. 68–88, 2017. DOI: 10.1080/10407782.2017.1353385.
  • W. Q. He, G. L. Qin, Y. Z. Wang, and Z. Z. Bao, “A segregated spectral element method for thermomagnetic convection of paramagnetic fluid in rectangular enclosures with sinusoidal temperature distribution on one side wall,” Numer. Heat Transfer Part A Appl., vol. 76, no. 2, pp. 51–72, 2019. DOI: 10.1080/10407782.2019.1615787.
  • M. Izadi, H. F. Oztop, M. A. Sheremet, S. A. M. Mehryan, and N. Abu-Hamdeh, “Coupled FHD-MHD free convection of a hybrid nanoliquid in an inversed T-shaped enclosure occupied by partitioned porous media,” Numer. Heat Transfer Part A Appl., vol. 76, no. 6, pp. 479–498, 2019. DOI: 10.1080/10407782.2019.1637626.
  • N. S. Gibanov, M. A. Sheremet, H. F. Oztop, and K. Al-Salem, “Effect of uniform inclined magnetic field on natural convection and entropy generation in an open cavity having a horizontal porous layer saturated with a ferrofluid,” Numer. Heat Transfer Part A Appl., vol. 72, no. 6, pp. 479–494, 2017. DOI: 10.1080/10407782.2017.1386515.
  • M. Ghalambaz, A. Doostanidezfuli, H. Zargartalebi, and A. J. Chamkha, “MHD phase change heat transfer in an inclined enclosure: Effect of a magnetic field and cavity inclination,” Numer. Heat Transfer Part A Appl., vol. 71, no. 1, pp. 91–109, 2017. DOI: 10.1080/10407782.2016.1244397.
  • S. Husain and M. A. Siddiqui, “Numerical and experimental analysis of natural convection flow boiling of water in internally heated vertical annulus,” Numer. Heat Transfer Part A Appl., vol. 73, no. 9, pp. 624–653, 2018. DOI: 10.1080/10407782.2018.1464315.
  • D. S. Mehta, B. Vaghela, M. K. Rathod, and J. Banarjee, “Heat transfer intensification in horizontal shell and tube latent heat storage unit,” Numer. Heat Transfer Part A Appl., vol. 75, no. 7, pp. 489–508, 2019. DOI: 10.1080/10407782.2019.1599273.
  • Y. Xu et al., “Heat transfer analysis of waxy crude oil under a new wide phase change partition model,” Numer. Heat Transfer Part A Appl., vol. 76, no. 12, pp. 991–1005, 2019. DOI: 10.1080/10407782.2019.1677071.
  • G. J. Yu et al., “A new general model for phase-change heat transfer of waxy crude oil during the ambient-induced cooling process,” Numer. Heat Transfer Part A Appl., vol. 71, no. 5, pp. 511–527, 2017. DOI: 10.1080/10407782.2016.1277934.
  • Z. Li and Z. G. Wu, “Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix,” Sol. Energy, vol. 99, pp. 172–184, 2014. DOI: 10.1016/j.solener.2013.11.017.
  • Y. Ganot, M. I. Dragila, and N. Weisbrod, “Impact of thermal convection on CO2 flux across the earth-atmosphere boundary in high-permeability soils,” Agric. For. Meteorol., vol. 184, pp. 12–24, 2014. DOI: 10.1016/j.agrformet.2013.09.001.
  • S. Klayborworn, W. Pakdee, P. Rattanadecho, and S. Vongpradubchai, “Effects of material properties on heating processes in two-layered porous media subjected to microwave energy,” Int. J. Heat Mass Transf., vol. 61, pp. 397–408, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.02.020.
  • A. Bejan, Entropy Generation through Heat and Fluid Flow. New York: Wiley, 1982.
  • A. Bejan, “Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes,” J. Appl. Phys., vol. 79, no. 3, pp. 1191–1218, 1996. DOI: 10.1063/1.362674.
  • P. Biswal and T. Basak, “Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review,” Renew. Sust. Energ. Rev., vol. 80, pp. 1412–1457, 2017. DOI: 10.1016/j.rser.2017.04.070.
  • R. S. Kaluri and T. Basak, “Role of entropy generation on thermal management during natural convection in porous square cavities with distributed heat sources,” Chem. Eng. Sci., vol. 66, no. 10, pp. 2124–2140, 2011. DOI: 10.1016/j.ces.2011.02.009.
  • T. Basak, R. S. Kaluri, and A. Balakrishnan, “Entropy generation during natural convection in a porous cavity: Effect of thermal boundary conditions,” Numer. Heat Transfer Part A Appl., vol. 62, no. 4, pp. 336–364, 2012. DOI: 10.1080/10407782.2012.691059.
  • A. Mchirgui, N. Hidouri, M. Magherbi, and A. B. Brahim, “Entropy generation in double-diffusive convection in a square porous cavity using Darcy-Brinkman formulation,” Transp. Porous Med., vol. 93, no. 1, pp. 223–240, 2012. DOI: 10.1007/s11242-012-9954-7.
  • P. Meshram, S. Bhardwaj, and A. Dalal, “Numerical investigation of two dimensional natural convection and entropy generation inside a porous square enclosure with sinusoidally heated wall,” Prog. Comput. Fluid Dy., vol. 16, no. 2, pp. 88–101, 2016. DOI: 10.1504/PCFD.2016.075150.
  • P. Datta, P. S. Mahapatra, K. Ghosh, N. K. Manna, and S. Sen, “Heat transfer and entropy generation in a porous square enclosure in presence of an adiabatic block,” Transp. Porous Med., vol. 111, no. 2, pp. 305–329, 2016. DOI: 10.1007/s11242-015-0595-5.
  • H. R. Ashorynejad and B. Hoseinpour, “Investigation of different nanofluids effect on entropy generation on natural convection in a porous cavity,” Eur. J. Mech. B Fluids, vol. 62, pp. 86–93, 2017. DOI: 10.1016/j.euromechflu.2016.11.016.
  • H. Heidary, M. Pirmohammadi, and M. Davoudi, “Control of free convection and entropy generation in inclined porous media,” Heat Transfer Eng., vol. 33, no. 6, pp. 565–573, 2012. DOI: 10.1080/01457632.2012.624875.
  • T. Basak, A. K. Singh, R. Richard, and S. Roy, “Finite element simulation with heatlines and entropy generation minimization during natural convection within porous tilted square cavities,” Ind. Eng. Chem. Res., vol. 52, no. 23, pp. 8046–8061, 2013. DOI: 10.1021/ie4005755.
  • A. K. Singh, T. Basak, A. Nag, and S. Roy, “Role of entropy generation on thermal management during natural convection in tilted porous square cavities,” J. Taiwan Inst. Chem. Eng., vol. 50, pp. 153–172, 2015. DOI: 10.1016/j.jtice.2014.12.026.
  • T. Armaghani, M. A. Ismael, and A. J. Chamkha, “Analysis of entropy generation and natural convection in an inclined partially porous layered cavity filled with a nanofluid,” Can. J. Phys., vol. 95, no. 3, pp. 238–252, 2017. DOI: 10.1139/cjp-2016-0570.
  • M. Siavashi, V. Bordbar, and P. Rahnama, “Heat transfer and entropy generation study of non-Darcy double-diffusive natural convection in inclined porous enclosures with different source configurations,” Appl. Therm. Eng., vol. 110, pp. 1462–1475, 2017. DOI: 10.1016/j.applthermaleng.2016.09.060.
  • R. Anandalakshmi and T. Basak, “Numerical simulations for the analysis of entropy generation during natural convection in porous rhombic enclosures,” Numer. Heat Transfer Part A Appl., vol. 63, no. 4, pp. 257–284, 2013. DOI: 10.1080/10407782.2012.712412.
  • R. Anandalakshmi and T. Basak, “Analysis of natural convection via entropy generation approach in porous rhombic enclosures for various thermal aspect ratios,” Int. J. Heat Mass Transf., vol. 64, pp. 224–244, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.067.
  • D. Das and T. Basak, “Thermal management investigation on fluid processing within porous rhombic cavities: Heatlines versus entropy generation,” Can. J. Chem. Eng., vol. 95, no. 7, pp. 1399–1416, 2017. DOI: 10.1002/cjce.22771.
  • Y. Varol, H. F. Oztop, and I. Pop, “Entropy analysis due to conjugate-buoyant flow in a right-angle trapezoidal enclosure filled with a porous medium bounded by a solid vertical wall,” Int. J. Therm. Sci., vol. 48, no. 6, pp. 1161–1175, 2009. DOI: 10.1016/j.ijthermalsci.2008.08.002.
  • T. Basak, R. Anandalakshmi, S. Roy, and I. Pop, “Role of entropy generation on thermal management due to thermal convection in porous trapezoidal enclosures with isothermal and non-isothermal heating of wall,” Int. J. Heat Mass Transf., vol. 67, pp. 810–828, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.019.
  • D. Ramakrishna, T. Basak, S. Roy, and E. Momoniat, “Analysis of thermal efficiency via analysis of heat flow and entropy generation during natural convection within porous trapezoidal cavities,” Int. J. Heat Mass Transf., vol. 77, pp. 98–113, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.002.
  • P. Biswal, V. M. Rathnam, and T. Basak, “Analysis of entropy production vs. energy efficiencies during natural convection in porous trapezoidal cavities exposed to various thermal ambience,” J. Taiwan Inst. Chem. Eng., vol. 65, pp. 118–133, 2016. DOI: 10.1016/j.jtice.2016.04.003.
  • Y. Varol, H. F. Oztop, and A. Koca, “Entropy production due to free convection in partially heated isosceles triangular enclosures,” Appl. Therm. Eng., vol. 28, no. 11–12, pp. 1502–1513, 2008. DOI: 10.1016/j.applthermaleng.2007.08.013.
  • Y. Varol, H. F. Oztop, and I. Pop, “Entropy generation due to natural convection in non-uniformly heated porous isosceles triangular enclosures at different positions,” Int. J. Heat Mass Transf., vol. 52, no. 5–6, pp. 1193–1205, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.08.026.
  • V. M. Rathnam, P. Biswal, and T. Basak, “Analysis of entropy generation during natural convection within entrapped porous triangular cavities during hot or cold fluid disposal,” Numer. Heat Transfer Part A Appl., vol. 69, no. 9, pp. 931–956, 2016. DOI: 10.1080/10407782.2015.1109362.
  • D. Das and T. Basak, “Analysis of entropy generation during natural convection in discretely heated porous square and triangular enclosures,” Numer. Heat Transfer Part A Appl., vol. 71, no. 10, pp. 979–1003, 2017. DOI: 10.1080/10407782.2017.1326785.
  • D. Das, L. Lukose, and T. Basak, “Role of multiple discrete heaters on the entropy generation during natural convection in porous square and triangular enclosures,” Numer. Heat Transfer Part A Appl., vol. 74, no. 10, pp. 1636–1665, 2018. DOI: 10.1080/10407782.2018.1529483.
  • S. Bhardwaj, A. Dalal, and S. Pati, “Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure,” Energy, vol. 79, pp. 467–481, 2015. DOI: 10.1016/j.energy.2014.11.036.
  • S. Bhardwaj and A. Dalal, “Effect of undulations on the natural convection heat transfer and entropy generation inside a porous right-angled triangular enclosure,” Numer. Heat Transfer Part A Appl., vol. 67, no. 9, pp. 972–991, 2015. DOI: 10.1080/10407782.2014.949152.
  • P. Biswal and T. Basak, “Analysis of entropy generation during natural convection in porous enclosures with curved surfaces,” Numer. Heat Transfer Part A Appl., vol. 71, no. 1, pp. 17–43, 2017. DOI: 10.1080/10407782.2016.1244399.
  • P. Biswal and T. Basak, “Role of thermal and flow characteristics on entropy generation during natural convection in porous enclosures with curved walls subjected to Rayleigh-Benard heating,” Int. J. Heat Mass Transf., vol. 109, pp. 1261–1280, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.118.
  • P. Biswal and T. Basak, “Role of differential vs Rayleigh-Benard heating at curved walls for efficient processing via entropy generation approach,” Int. J. Heat Mass Transf., vol. 124, pp. 390–413, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.056.
  • D. A. Nield and A. Bejan, Convection in Porous Media, 4th ed. New York: Springer, 2012.
  • J. N. Reddy, An Introduction to the Finite Element Method. New York: McGraw-Hill, 1993.
  • T. Basak, S. Roy, and A. R. Balakrishnan, “Effects of thermal boundary conditions on natural convection flows within a square cavity,” Int. J. Heat Mass Transfer, vol. 49, no. 23–24, pp. 4525–4535, 2006.
  • T. Basak, S. Roy, D. Ramakrishna, and I. Pop, “Visualization of heat transport during natural convection within porous triangular cavities via heatline approach,” Numer. Heat Transfer Part A Appl., vol. 57, no. 6, pp. 431–452, 2010. DOI: 10.1080/10407780903507866.
  • A. Bejan, “Study of entropy generation in fundamental convective heat transfer,” J. Heat Transf. Tr-ASME, vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. Boca Raton, FL: CRC Press, 1995.
  • A. K. Al Hadhrami, L. Elliott, and D. B. Ingham, “A new model for viscous dissipation in porous media across a range of permeability values,” Trans Porous Media, vol. 53, no. 1, pp. 117–122, 2003.
  • K. Hooman and H. Gurgenci, “Porous medium modeling of air-cooled condensers,” Transp Porous Med, vol. 84, no. 2, pp. 257–273, 2010. DOI: 10.1007/s11242-009-9497-8.
  • M. M. Ganzarolli and L. F. Milanez, “Natural convection in rectangular enclosures heated from below and symmetrically cooled from the sides,” Int. J. Heat Mass Transfer, vol. 38, no. 6, pp. 1063–1073, 1995. DOI: 10.1016/0017-9310(94)00217-J.
  • O. S. Bharti, A. K. Saha, M. K. Das, and S. Bansal, “Simultaneous measurement of velocity and temperature fields during natural convection in a water-filled cubical cavity,” Expt. Therm. Fluid Sci., vol. 99, pp. 272–286, 2018. DOI: 10.1016/j.expthermflusci.2018.07.039.
  • G. G. Ilis, M. Mobedi, and B. Sunden, “Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls,” Int. Commun. Heat Mass Transfer, vol. 35, no. 6, pp. 696–703, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.