Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 10-12
294
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Heat transfer in 3-D air gap between garment and body surface

ORCID Icon & ORCID Icon
Pages 708-720 | Received 27 Nov 2020, Accepted 10 May 2021, Published online: 27 May 2021

References

  • Z. L. Wang, J. Li, and M. Tian, “Thermal protective performance evaluation of fire proof garment eliminating air gaps effect based on computational fluid dynamics simulation,” J. Fire S., vol. 33, no. 6, pp. 445–458, 2015. DOI: 10.1177/0734904115608863.
  • X. Xiao, J. Hu, and T. Hua, “Through-thickness air permeability of woven fabric under low pressure compression,” Text Res. J., vol. 85, no. 16, pp. 1–11, 2015. DOI: 10.1177/0040517515569526.
  • P. Fontana, et al., “Thermo-physiological impact of different firefighting protective clothing ensembles in a hot environment,” Text Res. J., vol. 88, no. 7, pp. 744–753, 2018. DOI: 10.1177/0040517516688629.
  • P. Talukdar, D. A. Torvi, C. J. Simonson, and C. M. J. Sawcyn, “Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 526–539, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.04.041.
  • C. M. J. Sawcyn and D. A. Torvi, “Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics,” Text Res. J., vol. 79, no. 7, pp. 632–644, 2009. DOI: 10.1177/0040517508093415.
  • A. Ghazy and D. J. Bergstrom, “Numerical simulation of heat transfer in firefighters’ protective clothing with multiple air gaps during flash fire exposure,” Num. Heat Transf. A Appl., vol. 61, no. 8, pp. 569–593, 2012. DOI: 10.1080/10407782.2012.666932.
  • A. Ghazy and D. J. Bergstrom, “Numerical simulation of the influence of fabric’s motion on protective clothing performance during flash fire exposure,” Heat Mass Transf., vol. 49, no. 6, pp. 775–788, 2013. DOI: 10.1007/s00231-013-1123-1.
  • Y. Su, J. He, and J. Li, “An improved model to analyze radiative heat transfer in flame resistant fabrics exposed to low-level radiation,” Text Res. J., vol. 87, no. 16, pp. 1953–1967, 2017. DOI: 10.1177/0040517516660892.
  • Udayraj, P. Talukdar, and A. Das, “Numerical modelling of heat transfer and fluid motion in air gap between clothing and human body: Effect of air gap orientation and body movement,” Int. J. Heat Mass Transf., vol. 108, pp. 271–291, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.016..
  • Y. Yan Jiang, et al., “An integrated numerical simulator for thermal performance assessments of firefighters’ protective clothing,” Fire Saf. J., vol. 45, no. 5, pp. 314–326, 2010. DOI: 10.1016/j.firesaf.2010.06.003.
  • Y. Wang, Z. Wang, X. Zhang, M. Wang, and J. Li, “CFD simulation of naked flame manikin tests of fire proof garments,” Fire Saf. J., vol. 71, pp. 187–193, 2015. DOI: 10.1016/j.firesaf.2014.11.020.
  • M. Tian, Z. L. Wang, and J. Li, “3D numerical simulation of heat transfer through simplified protective clothing during fire exposure by CFD,” Int. J. Heat Mass Transf., vol. 93, pp. 314–321, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.027.
  • H. Q. Huang, P. Y. Mok, Y. L. Kwok, and J. S. Au, “Block pattern generation: From parameterizing human bodies to fit feature-aligned and flattenable 3D garments,” Comput. Indust., vol. 63, no. 7, pp. 680–691, 2012. DOI: 10.1016/j.compind.2012.04.001.
  • J. H. Jia and Y. J. Zhang, “Heat flux and pressure reduction using aerospike and counterfowing jet on complex hypersonic flow,” Int. J. Aeronaut. Space Sci., vol. 21, no. 2, pp. 337–346, 2020. DOI: 10.1007/s42405-019-00227-9.
  • G. Zhu, D. Kremenakova, Y. Wang, J. Militky, R. Mishra, and J. Wiener, “3D numerical simulation of laminar flow and conjugate heat transfer through fabric,” Autex Res. J., vol. 17, no. 1, pp. 53–60, 2017. DOI: 10.1515/aut-2015-0052.
  • P. R. Rautaheimo, “Developments in turbulence modelling with Reynolds-averaged Navier Stokes equations,” PhD Dissertation, Finnish Academies Technology, 2001, pp. 17–19.
  • D. C. Wilcox, Turbulence Modelling for CFD, 3rd ed. California: DCW industries Inc, 2006, pp. 243–249.
  • M. F. Modest, Radiative Heat Transfer, 2nd ed. San Diego: Academic Press, 2003, pp. 55–58.
  • W. A. Fiveland, “Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method,” J. Thermop. Heat Transf., vol. 2, no. 4, pp. 309–316, 1988. DOI: 10.2514/3.105.
  • CFD++ User Manual. Metacomp Technologies Inc, Agoura Hills, CA. 2013.
  • J. H. Jia, D. B. Fu, and Z. P. He, “Aerodynamic interactions of a Reusable Launch Vehicle model with different nose configurations,” Acta Astronaut., vol. 177, pp. 58–65, 2020. DOI: 10.1016/j.actaastro.2020.07.022.
  • M. S. Santos, D. Oliveira, J. B. L. M. Campos, and T. S. Mayor, “Numerical analysis of the flow and heat transfer in cylindrical clothing microclimates: Influence of the microclimate thickness ratio,” Int. J. Heat Mass Transf., vol. 117, pp. 71–79, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.102.
  • J. Li, Z. Zhang, and Y. Wang, “The relationship between air gap sizes and clothing heat transfer performance,” J. Text I, vol. 104, no. 12, pp. 1327–1336, 2013. DOI: 10.1080/00405000.2013.802080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.