Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 80, 2021 - Issue 1-2
205
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Thermo-hydraulic and entropy generation analysis for non-Newtonian fluid flow through sinusoidal wavy wall channel

, ORCID Icon &
Pages 22-42 | Received 01 Dec 2020, Accepted 10 May 2021, Published online: 14 Jun 2021

References

  • B. Sundén and T. Sköldheden, “Heat transfer and pressure drop in a new type of corrugated channels,” Int. Commun. Heat Mass Transfer, vol. 12, no. 5, pp. 559–566, Sep. 1985. DOI: 10.1016/0735-1933(85)90079-X.
  • N. Mohamed, B. Khedidja, Z. Belkacem, and D. Michel, “Numerical study of laminar forced convection in entrance region of a wavy wall channel,” Numer. Heat Transfer, Part A: Appl., vol. 53, no. 1, pp. 35–52, Oct. 2007. DOI: 10.1080/10407780701557378.
  • G. Wang and S. P. Vanka, “Convective heat transfer in periodic wavy passages,” Int. J. Heat Mass Transfer, vol. 38, no. 17, pp. 3219–3230, Nov. 1995. DOI: 10.1016/0017-9310(95)00051-A.
  • T. A. Rush, T. A. Newell, and A. M. Jacobi, “An experimental study of flow and heat transfer in sinusoidal wavy passages,” Int. J. Heat Mass Transfer, vol. 42, no. 9, pp. 1541–1553, May 1999. DOI: 10.1016/S0017-9310(98)00264-6.
  • Y. Asako, H. Nakamura, and M. Faghri, “Heat transfer and drop characteristics in a converging- diverging round corners,” Trans. JSME B, no. 477, vol. 52, pp. 2170–2176, 1986. DOI: 10.1299/kikaib.52.2170.
  • Y. Asako and M. Faghri, “Finite-volume solutions for laminar flow and heat transfer in a corrugated duct,” J. Heat Transfer, vol. 109, no. 3, pp. 627–634, Aug. 1987. DOI: 10.1115/1.3248134.
  • M. Faghri and Y. Asako, “Numerical determination of heat transfer and pressure drop characteristics for a converging-diverging flow channel,” J. Heat Transfer, vol. 109, no. 3, pp. 606–612, Aug. 1987. DOI: 10.1115/1.3248131.
  • A. Yutaka, N. Hiroshi, and M. Faghri, “Heat transfer and pressure drop characteristics in a corrugated duct with rounded corners,” Int. J. Heat Mass Transfer, vol. 31, no. 6, pp. 1237–1245, Jun. 1988. DOI: 10.1016/0017-9310(88)90066-X.
  • T. Ma, N. Xiu-Lin, D. Sun, M. Zeng, B. Sundén, and W. Qiu-Wang, “Experimental and numerical study on heat transfer and pressure drop performance of Cross-Wavy primary surface channel,” Energy Convers. Manag., vol. 125, pp. 80–90, 2016. DOI: 10.1016/j.enconman.2016.06.055.
  • C. C. Wang and C. K. Chen, “Forced convection in a wavy-wall channel,” Int. J. Heat Mass Transfer, vol. 45, no. 12, pp. 2587–2595, Jun. 2002. DOI: 10.1016/S0017-9310(01)00335-0.
  • S. S. Mousavi and K. Hooman, “Heat and fluid flow in entrance region of a channel with staggered baffles,” Energy Convers. Manag., vol. 47, no. 15–16, pp. 2011–2019, 2006. DOI: 10.1016/j.enconman.2005.12.018.
  • A. Ramgadia and A. Saha, “Numerical study of fully developed flow and heat transfer in a wavy passage,” Int. J. Therm. Sci., vol. 67, pp. 152–166, 2013. DOI: 10.1016/j.ijthermalsci.2012.12.005.
  • R. C. Yalamanchili, “Flow of non-Newtonian fluids in corrugated channels,” Int. J. Non-Linear Mech., vol. 28, no. 5, pp. 535–548, Sep. 1993. DOI: 10.1016/0020-7462(93)90046-N.
  • R. C. Yalamanchili, A. Sirivat, and K. R. Rajagopal, “An experimental investigation of the flow of dilute polymer solutions through corrugated channels,” J. Non-Newtonian Fluid Mech., vol. 58, no. 2–3, pp. 243–277, Jul. 1995. DOI: 10.1016/0377-0257(95)01347-X.
  • D. Béreiziat and R. Devienne, “Experimental characterization of Newtonian and non-Newtonian fluid flows in corrugated channels,” Int. J. Eng. Sci., vol. 37, no. 11, pp. 1461–1479, Sep. 1999. DOI: 10.1016/S0020-7225(98)00126-8.
  • Shubham, A. Saikia, A. Dalal, and S. Pati, “Thermo-hydraulic transport characteristics of non-Newtonian fluid flows through corrugated channels,” Int. J. Therm. Sci., vol. 129, pp. 201–208, Jul. 2018. DOI: 10.1016/j.ijthermalsci.2018.02.005.
  • A. Bejan, Entropy Generation through Heat and Fluid Flow. New York: Wiley, 1982.
  • A. Bejan, Entropy Generation Minimization. Boca Raton, New York: CRC Press, 1996.
  • T. H. Ko, “Numerical analysis of entropy generation and optimal Reynolds number for developing laminar forced convection in double-sine ducts with various aspect ratios,” Int. J. Heat Mass Transfer, vol. 49, no. 3–4, pp. 718–726, Feb. 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.08.023.
  • S. Mahmud and A. K. M. Sadrul Islam, “Laminar free convection and entropy generation inside an inclined wavy enclosure,” Int. J. Therm. Sci., vol. 42, no. 11, pp. 1003–1012, Nov. 2003. DOI: 10.1016/S1290-0729(03)00076-0.
  • A. Z. Sahin, “Thermodynamics of laminar viscous flow through a duct subjected to constant heat flux,” Energy, vol. 21, no. 12, pp. 1179–1187, Dec. 1996.
  • A. Z. Sahin, “Irreversibilities in various duct geometries with constant wall heat flux and laminar flow,” Energy, vol. 23, no. 6, pp. 465–473, Jun. 1998. DOI: 10.1016/S0360-5442(98)00010-3.
  • M. Akbarzadeh, S. Rashidi, and J. A. Esfahani, “Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel,” Appl. Therm. Eng., vol. 116, pp. 278–291, 2017. DOI: 10.1016/j.applthermaleng.2017.01.076.
  • M. H. Yazdi, I. Hashim, A. Fudholi, P. Ooshaksaraei, and K. Sopian, “Entropy generation analysis of power-law non-Newtonian fluid flow caused by micropatterned moving surface,” Math. Probl. Eng., vol. 2014, pp. 1–16, 2014. DOI: 10.1155/2014/141795.
  • S. Dutta, N. Goswami, A. K. Biswas, and S. Pati, “Numerical investigation of magnetohydrodynamic natural convection heat transfer and entropy generation in a rhombic enclosure filled with Cu-water nanofluid,” Int. J. Heat Mass Transfer, vol. 136, pp. 777–798, Jun. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.024.
  • M. P. Boruah, S. Pati, and P. R. Randive, “Implication of fluid rheology on the hydrothermal and entropy generation characteristics for mixed convective flow in a backward facing step channel with baffle,” Int. J. Heat Mass Transfer, pp. 138–160, vol. 137, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.094.
  • S.V. Patankar, Numerical Heat Transfer Fluid Flow. New York: Hemisphere, 1980.
  • J. A. Esfahani and P. B. Shahabi, “Effect of non-uniform heating on entropy generation for the laminar developing pipe flow of a high Prandtl number fluid,” Energy Convers. Manag., vol. 51, no. 11, pp. 2087–2097, 2010. DOI: 10.1016/j.enconman.2010.02.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.