Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 80, 2021 - Issue 3
200
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Coupled two-fluid flow and wall heat conduction modeling of nucleate pool boiling

& ORCID Icon
Pages 63-91 | Received 09 Dec 2020, Accepted 22 May 2021, Published online: 16 Jun 2021

References

  • M. I. Reznikov and Y. M. Lipov, Steam Boilers of Thermal Power Stations, Moscow: Mir Publishers, 1985.
  • J. M. Delhaye, M. Giot, and M. L. Riethmuller, Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, New York: McGraw-Hill, 1981.
  • P. Hrnjak, Refrigeration, in Perry’s Chemical Engineers’ Handbook, D. W. Green, Ed. New York: McGraw-Hill, 1997.
  • E. Cao, Heat Transfer in Process Engineering, New York: McGraw-Hill, 2010.
  • M. M. Ilic, M. M. Petrovic, and V. D. Stevanovic, “Boiling heat transfer modelling: A review and future prospectus,” Therm. Sci., vol. 23, no. 1, pp. 87–107, 2019. DOI: 10.2298/TSCI180725249I.
  • P. B. Whalley, Two-Phase Flow and Heat Transfer, Oxford: Oxford University Press, 1996.
  • S. Nukiyama, “The maximum and minimum values of the heat transmitted form metal to boiling water under atmospheric pressure,” J. Jpn. Soc. Mech. Eng., vol. 37, no. 206, pp. 367–374, 1934. DOI: 10.1299/jsmemagazine.37.206_367.
  • I. L. Pioro, W. Rohsenow, and S. S. Doerffer, “Nucleate pool-boiling heat transfer. I: Review of parametric effects of boiling surface,” Int. J. Heat Mass Transf., vol. 47, no. 23, pp. 5033–5044, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.06.019.
  • W. M. Rohsenow, “A method of correlation heat transfer data for surface boiling of liquids,” Trans. ASME, vol. 74, pp. 969–976, 1952.
  • S. S. Kutateladze, Heat Transfer and Hydrodynamic Resistance: Handbook, Moscow: Energoatomizdat Publishing House, 1990, Chapter 12.7 (in Russian).
  • B. B. Mikic and W. M. Rohsenow, “A new correlation of pool boiling data including the effect of heat surface characteristics,” J. Heat Transf.– Trans. ASME, vol. 91, no. 2, pp. 245–250, 1969. DOI: 10.1115/1.3580136.
  • C. L. Tien, “A hydrodynamic model for Nucleate Pool Boiling,” Int. J. Heat Mass Transf., vol. 5, no. 6, pp. 533–540, 1962. DOI: 10.1016/0017-9310(62)90164-3.
  • J. H. Lienhard, “A semi-rational nucleate boiling heat flux correlation,” Int. J. Heat Mass Transf., vol. 6, pp. 215–219, 1963.
  • M. G. Cooper, Saturated nucleate pool boiling: A simple correlation, 1st UK National Heat Transfer Conference (I. Chem. E. Symp. Series No. 86), vol. 3, 1984, pp. 785–793.
  • C. R. Kharangate and I. Mudawar, “Review of computational studies on boiling and condensation,” Int. J. Heat Mass Transf., vol. 108, pp. 1164–1196, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.065.
  • D. Garg and V. K. Dhir, “A unified three-dimensional numerical model for boiling curve in a temperature controlled mode,” J. Heat Transf.– Trans. ASME, vol. 141, no. 1, pp. 011504-1-011504-13, 2019. DOI: 10.1115/1.4041798.
  • C. Kunkelmann and P. Stephan, “CFD simulation of boiling flows using the volume-of-fluid mehtond within OPENFOAM,” Numer. Heat Transf. A Appl., vol. 56, no. 8, pp. 631–646, 2009. DOI: 10.1080/10407780903423908.
  • C. Kunkelmann, K. Ibrahem, N. Schweizer, S. Herbert, P. Stephan, and T. Gambaryan-Roisman, “The effect of three-phase contact line speed on local evaporative heat transfer: Experimental and numerical investigations,” Int. J. Heat Mass Transf., vol. 55, no. 7–8, pp. 1896–1904, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.11.044.
  • Y. Sato and B. Niceno, “Pool boiling simulation using an interface tracking method: From nucleate boiling to film boiling regime through critical heat flux,” Int. J. Heat Mass Transf., vol. 125, pp. 876–890, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.131.
  • A. Dhruv, E. Balaras, A. Riaz, and J. Kim, “A formulation for high-fidelity simulations of pool boiling in low gravity,” Int. J. Multiphase Flow, vol. 120, p. 103099, 2019. DOI: 10.1016/j.ijmultiphaseflow.2019.103099.
  • M. Z. Podowski, “Is reactor multiphase thermal-hydraulics a mature field of engineering science?,” Nucl. Eng. Des., vol. 345, pp. 196–208, 2019. DOI: 10.1016/j.nucengdes.2019.01.022.
  • M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, New York: Springer, 2011.
  • N. Kurul and M. Z. Podowski, “On the modelling of multidimensional effects in boiling channels,” Proceedings of the 27th National Heat Transfer Conference, Minneapolis, MN, 1991.
  • L. Gilman and E. Baglietto, “A self-consistent, physics-based boiling heat transfer modelling framework for use in computational fluid dynamics,” Int. J. Multiphase Flow, vol. 95, pp. 35–53, 2017. DOI: 10.1016/j.ijmultiphaseflow.2017.04.018.
  • G. L. Lee, M. C. Law, and V. C.-C. Lee, “Model development and simulation of nucleate pool boiling in OpenFoam: Boiling physics in bulk liquid and roles of freeboard region,” Int. J. Thermal Sciences, vol. 140, pp. 255–279, 2019. DOI: 10.1016/j.ijthermalsci.2019.01.040.
  • Z. Stosic and V. Stevanovic, “Three-dimensional numerical simulation of burnout on horizontal surface in pool boiling,” Proceedings of the 4th ASME/JSME Joint Fluids Engineering Conference, Honolulu, HI, 2003. DOI: 10.1115/FEDSM2003-45521.
  • M. Pezo and V. Stevanovic, “Numerical prediction of critical heat flux in pool boiling with two-fluid model,” Int. J. Heat Mass Transf., vol. 54, no. 15–16, pp. 3296–3303, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.03.057.
  • S. W. J. Welch, “Direct simulation of vapor bubble grow,” Int. J. Heat Mass Transfer, vol. 41, no. 12, pp. 1655–1666, 1998. DOI: 10.1016/S0017-9310(97)00285-8.
  • T. Fuchs, J. Kern, and P. Stephan, “A transient nucleate boiling model including microscale effects and wall heat transfer,” J. Heat Transfer– Trans. ASME, vol. 128, no. 12, pp. 1257–1265, 2006. DOI: 10.1115/1.2349502.
  • E. Aktinol and V. K. Dhir, “Numerical simulation of nucleate boiling phenomenon coupled with thermal response of the solid,” Microgravity Sci. Technol., vol. 24, no. 4, pp. 255–265, 2012. DOI: 10.1007/s12217-012-9308-7.
  • L. Zhang, Z. D. Li, K. Li, H. X. Li, and J. F. Zhao, “Influence of heater thermal capacity on bubble dynamics and heat transfer in nucleate pool boiling,” Appl. Thermal Eng., vol. 88, pp. 118–126, 2015. DOI: 10.1016/j.applthermaleng.2014.11.080.
  • Z. D. Li, L. Zhang, J. F. Zhao, H. X. Li, K. Li, and K. Wu, “Numerical simulation of bubble dynamics and heat transfer with transient thermal response of solid wall during pool boiling of FC-72,” Int. J. Heat Mass Transf., vol. 84, pp. 409–418, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.12.061.
  • A. Stojanovic, V. Stevanovic, M. Petrovic, and D. Zivkovic, “Numerical investigation of nucleate pool boiling heat transfer,” Therm. Sci., vol. 20, no. suppl. 5, pp. 1301–S1312, 2016. DOI: 10.2298/TSCI160404276S.
  • T. G. Theofanous, J. P. Tu, A. T. Tu, A. T. Dinh, and T. N. Dinh, “The boiling crisis phenomenon Part I: Nucleation and nucleate boiling heat transfer,” Exp. Therm. Fluid Sci., vol. 26, no. 6–7, pp. 775–792, 2002. DOI: 10.1016/S0894-1777(02)00192-9.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, New York: Hemisphere Publishing Corporation, 1980.
  • I. I. Gogonin and S. S. Kutateladze, “Critical heat flux as a function of heater size for a liquid boiling in a large enclosure,” J. Eng. Phys., vol. 33, no. 5, pp. 1286–1289, 1977. DOI: 10.1007/BF00860899.
  • Z. Stosic and V. Stevanovic, “Advanced Three-Dimensional Two-Fluid Porous Media Method for Transient Two-Phase Flow Thermal-Hydraulics in Complex Geometries,” Numer. Heat Transf. B, vol. 41, no. 3–4, pp. 263–289, 2002. DOI: 10.1080/104077902753541014.
  • V. Stevanovic, M. Petrovic, S. Milivojevic, and B. Maslovaric, “Prediction and control of steam accumulation,” Heat Transf. Eng., vol. 36, no. 5, pp. 498–510, 2015. DOI: 10.1080/01457632.2014.935226.
  • B. Sun, J. Guo, Y. Lei, L. Yang, Y. Li, and G. Zhang, “Simulation and verification of a non-equilibrium thermodynamic model for a steam catapult’s steam accumulator,” Int. J. Heat Mass Transf., vol. 85, pp. 88–97, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.120.
  • M. Ishii and N. Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE J., vol. 25, no. 5, pp. 843–855, 1979. DOI: 10.1002/aic.690250513.
  • J. C. Rousseau and G. Houdayer, Advanced Safety Code CATHARE Summary of Verification Studies on Separate Effects Experiments, Proceeding of the NURETH-2, Santa Barbara, CA: American Nuclear Society, 1983, pp. 343–351.
  • Z. Simovic, S. Ocokoljic, and V. Stevanovic, “Interfacial friction correlations for the two-phase flows across tube bundles,” Int. J. Multiphase Flow, vol. 33, no. 2, pp. 217–226, 2007. DOI: 10.1016/j.ijmultiphaseflow.2006.08.003.
  • B. Maslovaric, V. Stevanovic, and S. Milivojevic, “Numerical simulation of two-dimensional kettle reboiler shell side thermal–hydraulics with swell level and liquid mass inventory prediction,” Int. J. Heat Mass Transf., vol. 75, pp. 109–121, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.064.
  • W. Fritz, “Berechung des Maximal Volume von Dampfblasen,” Phys. Z., vol. 36, pp. 379–384, 1935.
  • V. V. Yagov, “Candidate’s,” Thesis, Moscow Power Engineering Institute, Moscow, 1971 (in Russian).
  • V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer, Moscow: MIR Publisher, 1980, pp. 311–312.
  • V. Stevanovic and P. Hrnjak, “Numerical simulation of three dimensional two-phase flow and prediction of oil retention in an evaporator of the automotive air conditioning system,” Appl. Therm. Eng., vol. 117, pp. 468–480, 2017. DOI: 10.1016/j.applthermaleng.2017.02.027.
  • J.-W. Song, D.-L. Zeng, and L.-E. Fan, “Temperature dependence of contact angles of water on stainless steel surface at elevated temperatures and pressures: In situ characterization and thermodynamic analysis,” J. Colloid Interface Sci., vol. 561, pp. 870–880, 2020. DOI: 10.1016/j.jcis.2019.11.070.
  • F. D. Moore and R. B. Mesler, “The measurement of rapid surface temperature fluctuations during nucleate boiling of water,” AIChE J., vol. 7, no. 4, pp. 620–624, 1961. DOI: 10.1002/aic.690070418.
  • V. K. Dhir, “Mechanistic prediction of nucleate boiling heat transfer – achievable or a hopeless task?,” J. Heat Transf. – Trans. ASME, vol. 128, no. 1, pp. 1–12, 2006. DOI: 10.1115/1.2136366.
  • M. Jakob and W. Linke, “Der Waermeuebergang beim Vordampfen von Fluessigkeiten an senkrechten und waagerichten Flaeschen,” Phys. T., vol. 35, no. 8, pp. 267–280, 1935.
  • T. G. Theofanous, T. N. Dinh, J. P. Tu, and A. T. Dinh, “The boiling crisis phenomenon, Part II: Dryout dynamics burnout,” Exp. Therm. Fluid Sci., vol. 26, no. 6–7, pp. 793–810, 2002. DOI: 10.1016/S0894-1777(02)00193-0.
  • J. H. Lienhard and V. K. Dhir, “Hydrdrodynamic prediction of peak pool-boiling heat fluxes from finite bodies,” J. Heat Transf. – Trans. ASME, vol. 95, no. 2, pp. 152–158, 1973. DOI: 10.1115/1.3450013.
  • M. S. Plesset and S. A. Zwick, “A nonsteady heat diffusion problem with spherical symmetry,” J. Appl. Phys., vol. 23, no. 1, pp. 95–98, 1952. DOI: 10.1063/1.1701985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.