Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 80, 2021 - Issue 3
114
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation on the influence of installation angle of inclined interrupted fins heat sink on heat dissipation performance

, , , , &
Pages 111-129 | Received 02 Dec 2020, Accepted 10 May 2021, Published online: 16 Jun 2021

References

  • Z. Y. Guo, “Hot subject of the international heat transfer community—mcroelectronic cooling,” Bull. Nat. Sci. Found. China, vol. 2, no. 2, pp. 20–25, 1988.
  • J. H. Kim, “Spray cooling heat transfer: The state of the art,” Int. J. Heat Fluid Flow, vol. 28, no. 4, pp. 753–767, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.09.003.
  • S. W. Kang, W. C. Wei, S. H. Tsai, and S. Y. Yang, “Experimental investigation of silver nano-fluid on heat pipe thermal performance,” Appl. Therm. Eng., vol. 26, no. 17–18, pp. 2377–2382, 2006. DOI: 10.1016/j.applthermaleng.2006.02.020.
  • Q. Shen, D. M. Sun, Y. Xu, T. Jin, and X. Zhao, “Orientation effects on natural convection heat dissipation of rectangular fin heat sinks mounted on LEDs,” Int. J. Heat Mass Transfer, vol. 75, pp. 462–469, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.085.
  • K. V. Murali and K. M. Sandeep, “Numerical analysis of forced convective heat transfer of nanofluids in microchannel for cooling electronic equipment,” Mater. Today: Proc., vol. 17, pp. 295–302, 2019.
  • Y. F. Yan et al., “Influence of hydrogels embedding positions on automatic adaptive cooling of hot spot in fractal microchannel heat sink,” Int. J. Therm. Sci., vol. 155, pp. 106428, 2020. DOI: 10.1016/j.ijthermalsci.2020.106428.
  • D. W. Zhuang, Y. F. Yang, G. L. Ding, X. Y. Du, and Z. T. Hu, “Optimization of microchannel heat sink with rhombus fractal-like units for electronic chip cooling,” Int. J. Refrig., vol. 116, pp. 108–118, 2020. DOI: 10.1016/j.ijrefrig.2020.03.026.
  • S. Y. Jung, J. H. Park, S. J. Lee, and H. Park, “Heat transfer and flow characteristics of forced convection in PDMS microchannel heat sink,” Exp. Therm. Fluid Sci., vol. 109, pp. 109904, 2019. DOI: 10.1016/j.expthermflusci.2019.109904.
  • M. Alimohammadi, Y. Aghli, E. S. Alavi, M. Sardarabadi, and M. Passandideh-Fard, “Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection,” Appl. Therm. Eng., vol. 111, pp. 271–279, 2017. DOI: 10.1016/j.applthermaleng.2016.09.028.
  • C. J. Ho, L. C. Wei, and Z. W. Li, “An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid,” Appl. Therm. Eng., vol. 30, no. 2–3, pp. 96–103, 2010. DOI: 10.1016/j.applthermaleng.2009.07.003.
  • M. Kalteh et al., “Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink,” Appl. Therm. Eng., vol. 36, pp. 260–268, 2012. DOI: 10.1016/j.applthermaleng.2011.10.023.
  • V. K. Jha and S. K. Bhaumik, “Enhanced heat dissipation in helically finned heat sink through swirl effects in free convection,” Int. J. Heat Mass Transfer, vol. 138, pp. 889–902, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.099.
  • P. Ranjith, A. Manimaran, A. S. Praveen, and T. Ramesh, “Experimental investigation of heat transfer characteristics of the LED module using passive heat sinks,” Int. J. Ambient Energy, vol. 41, no. 11, pp. 1209–1213, 2020. DOI: 10.1080/01430750.2018.1507934.
  • Y. Zhang et al., “Non-orthogonal multiple-relaxation-time lattice Boltzmann simulation of natural convection in porous square cavity with internal heat source,” J. Beijing Univ. Aeronaut. Astronaut., vol. 46, pp. 241–251, 2020.
  • A. Purusothaman, “Investigation of natural convection heat transfer performance of the QFN-PCB electronic module by using nanofluid for power electronics cooling applications,” Adv. Powder Technol., vol. 29, no. 4, pp. 996–1004, 2018. DOI: 10.1016/j.apt.2018.01.018.
  • K. El Omari, T. Kousksou, and Y. Le Guer, “Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices,” Appl. Therm. Eng., vol. 31, no. 14–15, pp. 3022–3035, 2011. DOI: 10.1016/j.applthermaleng.2011.05.036.
  • N. Kayansayan, “Thermal-characteristics of fin-and-tube heat-exchanger cooled by natural-convection,” Exp. Therm. Fluid Sci., vol. 7, no. 3, pp. 177–188, 1993. DOI: 10.1016/0894-1777(93)90001-Y.
  • E. Hahne and D. Zhu, “Natural-convection heat-transfer on finned tubes in air,” Int. J. Heat Mass Transfer, vol. 37, pp. 59–63, 1994. DOI: 10.1016/0017-9310(94)90009-4.
  • L. Dialameh, M. Yaghoubi, and O. Abouali, “Natural convection from an array of horizontal rectangular thick fins with short length,” Appl. Therm. Eng., vol. 28, no. 17–18, pp. 2371–2379, 2008. DOI: 10.1016/j.applthermaleng.2008.01.020.
  • G. P. Lohar and S. Y. Bhosale, “Experimental investigation of heat transfer for optimizing fin spacing in horizontal rectangular fin array under natural and forced convection and validation using CFD,” Int. J. Technol. Res. Eng., vol. 2, pp. 120–123, 2012.
  • K. C. Karki and S. V. Patankar, “Cooling of a vertical shrouded fin array by natural-convection - A numerical study,” J. Heat Transfer, vol. 109, no. 3, pp. 671–676, 1987. DOI: 10.1115/1.3248140.
  • J. R. Senapati, S. K. Dash, and S. Roy, “Numerical investigation of natural convection heat transfer from vertical cylinder with annular fins,” Int. J. Therm. Sci., vol. 111, pp. 146–159, 2017. DOI: 10.1016/j.ijthermalsci.2016.08.019.
  • X. M. Huang, C. Y. Shi, J. H. Zhou, X. J. Lu, and G. L. Xu, “Performance analysis and design optimization of heat pipe sink with a variable height fin array under natural convection,” Appl. Therm. Eng., vol. 159, pp. 113939, 2019. DOI: 10.1016/j.applthermaleng.2019.113939.
  • T. K. Ibrahim et al., “Experimental and numerical investigation of heat transfer augmentation in heat sinks using perforation technique,” Appl. Therm. Eng., vol. 160, pp. 113974, 2019. DOI: 10.1016/j.applthermaleng.2019.113974.
  • T. K. Ibrahim et al., “The impact of square shape perforations on the enhanced heat transfer from fins: Experimental and numerical study,” Int. J. Therm. Sci., vol. 149, pp. 106144, 2020. DOI: 10.1016/j.ijthermalsci.2019.106144.
  • D. G. Kröger, Air-cooled heat exchangers and cooling towers[M]. Penwell Corporation Oklahoma, 2004.
  • D. B. Kwak, J. H. Noh, K. S. Lee, and S. J. Yook, “Cooling performance of a radial heat sink with triangular fins on a circular base at various installation angles,” Int. J. Therm. Sci., vol. 120, pp. 377–385, 2017. DOI: 10.1016/j.ijthermalsci.2017.06.022.
  • W. Q. Wang, F. L. Wang, Y. L. He, and M. Q. Xiao, “Numerical and experimental study of a novel leaf-type fins,” Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys., vol. 39, pp. 2469–2475, 2018.
  • J. Bridges and X. Yan, “Extending the life of LEDs – Part 1: Improving the effciency and lifetime of LEDs via effective thermal management,” China Light Lighting, vol. 388, pp. 62–64, 2017.
  • Y. Q. Li, Investigation of Heat Transfer Enhancement from Straight-Fin Heat Sink under Natural Convection. Zhengzhou: School of Chemical Engineering and Energy, Zhengzhou University, 2016.
  • M. Fujii, “Enhancement of natural convection heat transfer from a vertical heated plate using inclined fins,” Heat Trans. Asian Res., vol. 36, no. 6, pp. 334–344, 2007. DOI: 10.1002/htj.20168.
  • J. Z. Zhao, R. R. Yan, Y. Zhang, B. Z. Song, and R. G. Chen, “Numerical study on natural convection of heat sinks with symmetric inclined fin arrays,” Sci. Technol. Eng., vol. 19, no. 22, pp. 155–161, 2019.
  • F. Harahap and J. H. N. Mcmanus, “Natural convection heat transfer from horizontal rectangular fin arrays,” J. Heat Transfer, vol. 89, no. 1, pp. 32–38, 1967. DOI: 10.1115/1.3614318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.