Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 80, 2021 - Issue 4
99
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Heat sink evolutionary optimization by natural construction method

ORCID Icon & ORCID Icon
Pages 168-183 | Received 18 Jan 2021, Accepted 01 Jun 2021, Published online: 28 Jun 2021

References

  • T. Bello-Ochende, J. P. Meyer, and F. U. Ighalo, “Combined numerical optimization and constructal theory for the design of microchannel heat sinks,” Numer. Heat Transf. A: Appl., vol. 58, no. 11, pp. 882–899, 2010. DOI: 10.1080/10407782.2010.529036.
  • F. Zhang, B. Sundén, W. Zhang, and G. Xie, “Constructal parallel-flow and counterflow microchannel heat sinks with bifurcations,” Numer. Heat Transf. A: Appl., vol. 68, no. 10, pp. 1087–1105, 2015. DOI: 10.1080/10407782.2015.1023148.
  • H. Nemati, “A general equation based on entropy generation minimization to optimize plate fin heat sink,” Eng. J., vol. 22, no. 1, pp. 159–174, 2018. DOI: 10.4186/ej.2018.22.1.159.
  • A. Bejan and M. Almogbel, “Constructal T-shaped fins,” Int. J. Heat Mass Transf., vol. 43, no. 12, pp. 2101–2115, 2000. DOI: 10.1016/S0017-9310(99)00283-5.
  • A. Da Silva, A. Bejan, and S. Lorente, “Maximal heat transfer density in vertical morphing channels with natural convection,” Numer. Heat Transf. A: Appl., vol. 45, no. 2, pp. 135–152, 2004. DOI: 10.1080/10407780390236389.
  • W. Wechsatol, A. Bejan, and S. Lorente, “Tree-shaped flow architectures: strategies for increasing optimization speed and accuracy,” Numer. Heat Transf. A: Appl., vol. 48, no. 8, pp. 731–744, 2005. DOI: 10.1080/10407780500197707.
  • A. Bejan and S. Lorente, “Constructal theory of generation of configuration in nature and engineering,” J. Appl. Phys., vol. 100, no. 4, p. 5, 2006.
  • A. Bejan and S. Lorente, Design with Constructal Theory. New Jersey: Wiley, 2008. DOI: 10.1002/9780470432709.
  • A. Bejan, “Constructal law: optimization as design evolution,” J. Heat Transfer, vol. 137, no. 6, pp. 061003, 2015. DOI: 10.1002/9780470432709.
  • W. Wechsatol, S. Lorente, and A. Bejan, “Dendritic heat convection on a disc,” Int. J. Heat Mass Transf., vol. 46, no. 23, pp. 4381–4391, 2003. DOI: 10.1016/S0017-9310(03)00295-3.
  • A. K. da Silva, S. Lorente, and A. Bejan, “Constructal multi-scale tree-shaped heat exchangers,” J. Appl. Phys., vol. 96, no. 3, pp. 1709–1718, 2004. DOI: 10.1063/1.1766089.
  • C. Biserni, L. Rocha, G. Stanescu, and E. Lorenzini, “Constructal H-shaped cavities according to Bejan’s theory,” Int. J. Heat Mass Transf., vol. 50, no. 11–12, pp. 2132–2138, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.11.006.
  • G. Lorenzini, C. Biserni, and L. Rocha, “Constructal design of non-uniform X-shaped conductive pathways for cooling,” Int. J. Therm. Sci., vol. 71, pp. 140–147, 2013. DOI: 10.1016/j.ijthermalsci.2013.04.021.
  • G. Lorenzini, C. Biserni, and L. Rocha, “Constructal design of X-shaped conductive pathways for cooling a heat-generating body,” Int. J. Heat Mass Transf., vol. 58, no. 1–2, pp. 513–520, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.040.
  • G. Lorenzini et al., “Constructal design of I-shaped high conductive pathway for cooling a heat-generating medium considering the thermal contact resistance,” Int. J. Heat Mass Transf., vol. 93, pp. 770–777, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.015.
  • A. Imane, H. Hamid, L. Jawad, Z. Khalid, and O. Abdelaziz, “Numerical solution of unsteady conduction heat transfer in anisotropic cylinders,” J. Therm. Sci. Eng. Appl., vol. 8, no. 3, p. 031013, 2016. DOI: 10.1115/1.4033467.
  • C. Biserni, F. Dalpiaz, T. Fagundes, and L. Rocha, “Constructal design of T-shaped morphing fins coupled with a trapezoidal basement: a numerical investigation by means of exhaustive search and genetic algorithm,” Int. J. Heat Mass Transf., vol. 109, pp. 73–81, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.033.
  • E. Estrada, et al., “Constructal design of tree shaped cavities inserted into a cylindrical body with heat generation,” Int. J. Therm. Sci., vol. 152, p. 106342, 2020. DOI: 10.1016/j.ijthermalsci.2020.106342.
  • A. K. Barik, S. Rout, and P. Patro, “Evolution of designs for constructal cooling of a square plate using water, ionic liquid, and nano-enhanced ionic liquids,” J. Therm. Sci. Eng. Appl., vol. 12, no. 2, p. 021020, 2020. DOI: 10.1115/1.4045884.
  • Z. Lu and K. Zhang, “Study on the performance of a Y-shaped liquid cooling heat sink based on constructal law for electronic chip cooling,” J. Therm. Sci. Eng. Appl., vol. 13, no. 3, p. 034501, 2021. DOI: 10.1115/1.4047946.
  • J. Dirker and J. P. Meyer, “Topology optimization for an internal heat-conduction cooling scheme in a square domain for high heat flux applications,” J. Heat Transf., vol. 135, no. 11, p. 111010, 2013. DOI: 10.1115/1.4024615.
  • B. Li, J. Hong, and X. Tian, “Generating optimal topologies for heat conduction by heat flow paths identification,” Int. Commun. Heat Mass Transf., vol. 75, pp. 177–182, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.04.016.
  • Y. Zhang, et al., “Optimal design of a multi-branch conducting path for area-to-point heat conduction using multi-objective optimization,” Appl. Therm. Eng., vol. 125, pp. 1354–1367, 2017. DOI: 10.1016/j.applthermaleng.2017.07.120.
  • H. A. Jahangiry and A. Jahangiri, “Combination of isogeometric analysis and level-set method in topology optimization of heat-conduction systems,” Appl. Therm. Eng., vol. 161, p. 114134, 2019. DOI: 10.1016/j.applthermaleng.2019.114134.
  • L. Xu, L. Pu, S. Zhang, L. Nian, and Y. Li, “Structure optimization design of ground heat exchanger by topology method to mitigate the geothermal imbalance,” Appl. Therm. Eng., vol. 170, p. 115023, 2020. DOI: 10.1016/j.applthermaleng.2020.115023.
  • B. Li, S. Yan, and Q. Lin, “Automated layout design of stiffened container structures based on the morphology of plant ramifications,” J. Bionic Eng., vol. 13, no. 2, pp. 344–354, 2016. DOI: 10.1016/S1672-6529(16)60307-4.
  • L. Zhao, W. Chen, J. Ma, and Y. Yang, “Structural bionic design and experimental verification of a machine tool column,” J. Bionic Eng., vol. 5, pp. 46–52, 2008. DOI: 10.1016/S1672-6529(08)60071-2.
  • M. Errera and A. Bejan, “Deterministic tree networks for river drainage basins,” Fractals, vol. 6, no. 3, pp. 245–261, 1998. DOI: 10.1142/S0218348X98000298.
  • A. Bejan, Shape and Structure, from Engineering to Nature. Cambridge, UK: Cambridge University Press, 2000.
  • A. Bejan, “Constructal-theory network of conducting paths for cooling a heat generating volume,” Int. J. Heat Mass Transf., vol. 40, no. 4, pp. 799–816, 1997. DOI: 10.1016/0017-9310(96)00175-5.
  • M. Almogbel and A. Bejan, “Conduction trees with spacings at the tips,” Int. J. Heat Mass Transf., vol. 42, no. 20, pp. 3739–3756, 1999. DOI: 10.1016/S0017-9310(99)00051-4.
  • A. Bejan, “Constructal tree‐shaped paths for conduction and convection,” Int. J. Energy Res., vol. 27, no. 4, pp. 283–299, 2003. DOI: 10.1002/er.875.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.