Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 80, 2021 - Issue 4
110
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Flow and heat transfer characteristics of non-Newtonian fluid over an oscillating flat plate

, &
Pages 154-167 | Received 01 Jan 2021, Accepted 30 May 2021, Published online: 28 Jun 2021

References

  • A. Amiri, A. Eslami, R. Mollaabbasi, F. Larachi, and S. M. Taghavi, “Removal of a yield stress fluid by a heavier Newtonian fluid in a vertical pipe,” J. Non-Newton. Fluid, vol. 268, pp. 81–100, 2019. DOI: 10.1016/j.jnnfm.2019.05.004.
  • F. J. H. Gijsen, F. N. van de Vosse, and J. D. Janssen, “The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model,” J. Biomech, vol. 32, no. 6, pp. 601–608, 1999. DOI: 10.1016/S0021-9290(99)00015-9.
  • I. A. Frigaard, K. G. Paso, and P. R. de Souza Mendes, “Bingham’s model in the oil and gas industry,” Rheol. Acta, vol. 56, no. 3, pp. 259–282, 2017. DOI: 10.1007/s00397-017-0999-y.
  • W. Roland, C. Marschik, M. Krieger, B. Löw-Baselli, and J. Miethlinger, “Symbolic regression models for predicting viscous dissipation of three-dimensional non-Newtonian flows in single-screw extruders,” J. Non-Newton. Fluid, vol. 268, pp. 12–29, 2019. DOI: 10.1016/j.jnnfm.2019.04.006.
  • D. S. Sankar and L. Usik, “Influence of slip velocity in Herschel-Bulkley fluid flow between parallel plates-A mathematical study,” J. Mech. Sci. Technol., vol. 30, no. 7, pp. 3203–3218, 2016. DOI: 10.1007/s12206-016-0629-0.
  • P. K. Singeetham and V. K. Puttanna, “Viscoplastic fluids in 2D plane squeeze flow: A matched asymptotics analysis,” J. Non-Newton. Fluid, vol. 263, pp. 154–175, 2019. DOI: 10.1016/j.jnnfm.2018.12.003.
  • N. J. Balmforth, Y. Forterre, and O. Pouliquen, “The viscoplastic Stokes layer,” J. Non-Newton. Fluid, vol. 158, no. 1–3, pp. 46–53, 2009. DOI: 10.1016/j.jnnfm.2008.07.008.
  • B. R. Duffy, D. Pritchard, and S. K. Wilson, “The shear-driven Rayleigh problem for generalised Newtonian fluids,” J. Non-Newton. Fluid, vol. 206, pp. 11–17, 2014. DOI: 10.1016/j.jnnfm.2014.02.001.
  • M. Das, R. Mahato and R. Nandkeolyar, “Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer,” Alex. Eng. J., vol. 54, no. 4, pp. 871–879, 2015. DOI: 10.1016/j.aej.2015.07.007.
  • D. Liepsch and S. Moravec, “Pulsatile flow of non-Newtonian fluid in distensible models of human arteries,” BIR, vol. 21, no. 4, pp. 571–586, 1984. DOI: 10.3233/BIR-1984-21416.
  • H. Pascal, “Similarity solutions to some unsteady flows of non-Newtonian fluids of power law behavior,” Int. J. Nonlin. Mech, vol. 27, no. 5, pp. 759–771, 1992. DOI: 10.1016/0020-7462(92)90032-3.
  • O. Jambal, T. Shigechi, G. Davaa, and S. Momoki, “Effects of viscous dissipation and fluid axial heat conduction on heat transfer for non-Newtonian fluids in ducts with uniform wall temperature: Part I: Parallel plates and circular ducts,” Int. Commun. Heat Mass, vol. 32, no. 9, pp. 1165–1173, 2005. DOI: 10.1016/j.icheatmasstransfer.2005.07.002.
  • J. H. Rao, D. R. Jeng, and K. J. D. Witt, “Momentum and heat transfer in a power-law fluid with arbitrary injection/suction at a moving wall,” Int. J. Heat Mass Trans., vol. 42, no. 15, pp. 2837–2847, 1999. DOI: 10.1016/S0017-9310(98)00360-3.
  • S. P. Anjalidevi and R. Kandasamy, “Effects of chemical reaction, heat and mass transfer on laminar flow along a semi infinite horizontal plate,” Heat Mass Transf., vol. 35, no. 6, pp. 465–467, 1999. DOI: 10.1007/s002310050349.
  • M. Jalil, S. Asghar, and M. Mushtaq, “Analytical solutions of the boundary layer flow of power-law fluid over a power-law stretching surface,” Commun. Nonlinear Sci., vol. 18, no. 5, pp. 1143–1150, 2013. DOI: 10.1016/j.cnsns.2012.09.030.
  • B. H. L. Raju, V. D. Rao, and B. B. Krishna, “Flow and Heat Transfer of Quiescent Non-Newtonian Power-Law Fluid Driven by a Moving Plate: An Integral Approach,” Procedia Eng, vol. 127, pp. 485–492, 2015. DOI: 10.1016/j.proeng.2015.11.402.
  • R. Panton, “The transient for Stokes's oscillating plate: A solution in terms of tabulated functions,” J. Fluid Mech., vol. 31, no. 4, pp. 819–825, 1968. DOI: 10.1017/S0022112068000509.
  • A. R. A. Khaled and K. Vafai, “The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: Exact solutions,” Int. J. Nonlin. Mech., vol. 39, no. 5, pp. 795–809, 2004. DOI: 10.1016/S0020-7462(03)00043-X.
  • M. A. A. Mahmoud, “Slip velocity effect on a non-Newtonian power-law fluid over a moving permeable surface with heat generation,” Math. Comput. Model., vol. 54, no. 5-6, pp. 1228–1237, 2011. no DOI: 10.1016/j.mcm.2011.03.034.
  • D. Pal and S. Chakraborty, “Fluid flow induced by periodic temperature oscillation over a flat plate: Comparisons with the classical Stokes problems,” Phys. Fluids, vol. 27, no. 5, pp. 053601, 2015. DOI: 10.1063/1.4919733.
  • M. E. Erdogan, “A note on an unsteady flow of a viscous fluid due to an oscillating plane wall,” Int. J. Nonlin. Mech., vol. 35, no. 1, pp. 1–6, 2000. DOI: 10.1016/S0020-7462(99)00019-0.
  • A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition,” Commun. Nonlin. Sci., vol. 14, no. 4, pp. 1064–1068, 2009. DOI: 10.1016/j.cnsns.2008.05.003.
  • M. Shakhawath Hossain and N. E. Daidzic, “The Shear-Driven Fluid Motion Using Oscillating Boundaries,” J. Fluids Eng., vol. 134, no. 5, pp. 051203, 2012.
  • S. Gabbanelli, G. Drazer, and J. Koplik, “Lattice Boltzmann method for non-Newtonian (power-law) fluids,” Phys. Rev. E, vol. 72, no. 4, pp. 046312, 2005. DOI: 10.1103/PhysRevE.72.046312.
  • M. R. Eid and K. L. Mahny, “Unsteady MHD heat and mass transfer of a non-Newtonian nanofluid flow of a two-phase model over a permeable stretching wall with heat generation/absorption,” Adv. Powder Technol., vol. 28, no. 11, pp. 3063–3073, 2017. DOI: 10.1016/j.apt.2017.09.021.
  • D. Pritchard, C. R. McArdle, and S. K. Wilson, “The Stokes boundary layer for a power-law fluid,” J. Non-Newton. Fluid, vol. 166, no. 12-13, pp. 745–753, 2011. DOI: 10.1016/j.jnnfm.2011.04.011.
  • R. Zamolo and E. Nobile, “Solution of incompressible fluid flow problems with heat transfer by means of an efficient RBF-FD meshless approach,” Numer. Heat Tr. B–Fund, vol. 75, no. 1, pp. 19–42, 2019. DOI: 10.1080/10407790.2019.1580048.
  • S. Y. Deng, et al., “Unsteady electroosmotic flow of power-law fluid in a rectangular microchannel,” Mech. Res. Commun, vol. 39, no. 1, pp. 9–14, 2012. DOI: 10.1016/j.mechrescom.2011.09.003.
  • H. Ragueb and K. Mansouri, “A numerical study of viscous dissipation effect on non-Newtonian fluid flow inside elliptical duct,” Energ. Convers. Manage, vol. 68, pp. 124–132, 2013. DOI: 10.1016/j.enconman.2012.12.031.
  • H. Maleki, M. R. Safaei, H. Togun, and M. Dahari, “Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation,” J. Therm. Anal. Calorim., vol. 135, no. 3, pp. 1643–1654, 2019. DOI: 10.1007/s10973-018-7559-2.
  • E. J. Kansa, “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates,” Comput. Math. Appl, vol. 19, no. 8/9, pp. 127–145, 1990. no DOI: 10.1016/0898-1221(90)90270-T.
  • H. Zheng, C. Zhang, Y. Wang, J. Sladek, and V. Sladek, “A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals,” J. Comput. Phys, vol. 305, pp. 997–1014, 2016. DOI: 10.1016/j.jcp.2015.10.020.
  • L. Su, “A radial basis function (RBF)-finite difference (FD) method for the backward heat conduction problem,” Appl. Math. Comput., vol. 354, pp. 232–247, 2019. DOI: 10.1016/j.amc.2019.02.035.
  • I. Siraj Ul, S. Haq, and M. Uddin, “A meshfree interpolation method for the numerical solution of the coupled nonlinear partial differential equations,” Eng. Anal. Bound. Elem,, vol. 33, no. 3, pp. 399–409, 2009. DOI: 10.1016/j.enganabound.2008.06.005.
  • S. Zhang, “A symplectic procedure for two-dimensional coupled elastic wave equations using radial basis functions interpolation,” Comput. Math. Appl, vol. 76, no. 9, pp. 2167–2178, 2018. DOI: 10.1016/j.camwa.2018.08.014.
  • A. Jafarabadi and E. Shivanian, “Numerical simulation of nonlinear coupled Burgers’ equation through meshless radial point interpolation method,” Eng. Anal. Bound. Elem,, vol. 95, pp. 187–199, 2018. DOI: 10.1016/j.enganabound.2018.07.014.
  • E. J. Kansa and P. Holoborodko, “On the ill-conditioned nature of C∞ RBF strong collocation,” Eng. Anal. Bound. Elem., vol. 78, pp. 26–30, 2017. DOI: 10.1016/j.enganabound.2017.02.006.
  • F. Afiatdoust and M. Esmaeilbeigi, “Optimal variable shape parameters using genetic algorithm for radial basis function approximation,” Ain Shams Eng. J., vol. 6, no. 2, pp. 639–647, 2015. DOI: 10.1016/j.asej.2014.10.019.
  • W. Chen, Y. Hong, and J. Lin, “The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method,” Comput. Math. Appl., vol. 75, no. 8, pp. 2942–2954, 2018. DOI: 10.1016/j.camwa.2018.01.023.
  • S. Rippa, “An algorithm for selecting a good value for the parameter c in radial basis function interpolation,” Adv. Comput. Math., vol. 11, no. 2/3, pp. 193–210, 1999. DOI: 10.1023/A:1018975909870.
  • S. A. Sarra, “Adaptive radial basis function methods for time dependent partial differential equations,” Appl. Numer. Math,, vol. 54, no. 1, pp. 79–94, 2005. DOI: 10.1016/j.apnum.2004.07.004.
  • S. Kaennakham and N. Chuathong, “An automatic node-adaptive scheme applied with a RBF-collocation meshless method,” Appl. Math. Comput, vol. 348, pp. 102–125, 2019. DOI: 10.1016/j.amc.2018.11.066.
  • F. Saberi Zafarghandi, M. Mohammadi, E. Babolian, and S. Javadi, “Radial basis functions method for solving the fractional diffusion equations,” Appl. Math. Comput, vol. 342, pp. 224–246, 2019. DOI: 10.1016/j.amc.2018.08.043.
  • Y. Hong, J. Lin, and W. Chen, “Simulation of thermal field in mass concrete structures with cooling pipes by the localized radial basis function collocation method,” Int. J. Heat Mass Tran, vol. 129, pp. 449–459, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.037.
  • G. C. Bourantas, V. C. Loukopoulos, G. R. Joldes, A. Wittek, and K. Miller, “An explicit meshless point collocation method for electrically driven magnetohydrodynamics (MHD) flow,” Appl. Math. Comput, vol. 348, pp. 215–233, 2019. DOI: 10.1016/j.amc.2018.11.054.
  • S. Srinivasan and K. R. Rajagopal, “Study of a variant of Stokes’ first and second problems for fluids with pressure dependent viscosities,” Int. J. Eng. Sci, vol. 47, no. 11-12, pp. 1357–1366, 2009. no DOI: 10.1016/j.ijengsci.2008.11.002.
  • L. Ai and K. Vafai, “An Investigation of Stokes' Second Problem for Non-Newtonian Fluids,” Numer. Heat Tr. A–Appl., vol. 47, no. 10, pp. 955–980, 2005. DOI: 10.1080/10407780590926390.
  • A. Sinha, J. C. Misra, and G. C. Shit, “Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source,” Alex. Eng. J., vol. 55, no. 3, pp. 2023–2033, 2016. DOI: 10.1016/j.aej.2016.07.010.
  • G. Sheng, Y. Su, and W. Wang, “A new fractal approach for describing induced-fracture porosity/permeability/compressibility in stimulated unconventional reservoirs,” J. Petrol. Sci. Eng, vol. 179, pp. 855–866, 2019. DOI: 10.1016/j.petrol.2019.04.104.
  • A. Chang, et al., “A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs,” Physica A, vol. 502, pp. 356–369, 2018. DOI: 10.1016/j.physa.2018.02.080.
  • H. Pouraria, J. K. Seo, and J. K. Paik, “Numerical modelling of two-phase oil-water flow patterns in a subsea pipeline,” Ocean Eng., vol. 115, pp. 135–148, 2016. DOI: 10.1016/j.oceaneng.2016.02.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.