Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 80, 2021 - Issue 3
191
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis on heat and mass transfer of the planar membrane dehumidifier

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 92-110 | Received 15 Jan 2021, Accepted 01 Jun 2021, Published online: 23 Jun 2021

References

  • R. Qi, C. Dong, and L. Z. Zhang, “A review of liquid desiccant air dehumidification: From system to material manipulations,” Energy Build., vol. 179, p. 109897, 2020.
  • W. Zheng and W. M. Worek, “Numerical simulation of combined heat and mass transfer processes in a rotary dehumidifier,” Numer. Heat Transf. A: Appl., vol. 23, no. 2, pp. 211–232, 1993. DOI: 10.1080/10407789308913669.
  • L. Z. Zhang, “Heat and mass transfer in a total heat exchanger: cross-corrugated triangular ducts with composite supported liquid membrane,” Numer. Heat Transf. A: Appl., vol. 53, no. 11, pp. 1195–1210, 2008. DOI: 10.1080/10407780701853314.
  • T. Chen and L. Norford, “Energy performance of next-generation dedicated outdoor air cooling systems in low-energy building operations,” Energy Build., vol. 209, p. 109677, 2020. DOI: 10.1016/j.enbuild.2019.109677.
  • L. Z. Zhang, “Performance deteriorations from flow maldistribution in air-to-air heat exchangers: a parallel-plates membrane core case,” Numer. Heat Transf. A: Appl., vol. 56, no. 9, pp. 746–763, 2009. DOI: 10.1080/10407780903466402.
  • D. S. Sholl and R. P. Lively, “Seven chemical separations to change the world,” Nature, vol. 532, no. 7600, pp. 435–437, 2016. DOI: 10.1038/532435a.
  • S. M. Huang, W. Z. Yuan, and M. Yang, “Advances in heat and mass transfer in the membrane-based dehumidifiers and liquid desiccant air dehumidification systems,” Int. J. Heat Mass Transf., vol. 139, pp. 881–906, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.069.
  • Z. X. Li and L. Z. Zhang, “Flow maldistribution and performance deteriorations in a counter flow hollow fiber membrane module for air humidification/dehumidification,” Int. J. Heat Mass Transf., vol. 74, pp. 421–430, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.047.
  • Y. H. Ju and W. C. Lee, “A method for solving transient diffusion problems,” Numer. Heat Transf., vol. 9, no. 6, pp. 663–676, 1986. DOI: 10.1080/10407788608913500.
  • H. Bai, J. Zhu, Z. Chen, and J. Chu, “Parametric analysis of a cross-flow membrane-based parallel-plate liquid desiccant dehumidification system: numerical and experimental data,” Energy Build., vol. 158, pp. 494–508, 2018. DOI: 10.1016/j.enbuild.2017.10.018.
  • L. Z. Zhang, “Numerical study of heat and mass transfer in an enthalpy exchanger with a hydrophobic-hydrophilic composite membrane core,” Numer. Heat Transf. A: Appl., vol. 51, no. 7, pp. 697–714, 2007. DOI: 10.1080/10407780600879048.
  • L. Hyunjeong, C. Sangmi, C. Yeonjoo, K. Soyeon, and K. Minsung, “Comparative thermodynamic analysis of membrane-based vacuum air dehumidification systems,” Appl. Therm. Eng., vol. 179, p. 115676, 2020.
  • C. Vallieres and E. Favre, “Vacuum versus sweeping gas operation for binary mixtures separation by dense membrane processes,” J. Membr. Sci., vol. 244, no. 1–2, pp. 17–23, 2004. DOI: 10.1016/j.memsci.2004.04.023.
  • M. Qu, O. Abdelaziz, Z. Gao, and H. Yin, “Isothermal membrane-based air dehumidification: a comprehensive review,” Renew. Sustain. Energy Rev., vol. 82, pp. 4060–4069, 2018. DOI: 10.1016/j.rser.2017.10.067.
  • P. Scovazzo and A. Scovazzo, “Isothermal dehumidification or gas drying using vacuum sweep dehumidification,” Appl. Therm. Eng., vol. 50, no. 1, pp. 225–233, 2013. DOI: 10.1016/j.applthermaleng.2012.05.019.
  • P. Scovazzo and R. MacNeill, “Membrane module design, construction, and testing for vacuum sweep dehumidification (VSD): part I, prototype development and module design,” J. Membr. Sci., vol. 576, pp. 96–107, 2019. DOI: 10.1016/j.memsci.2018.12.076.
  • P. Scovazzo, “Membrane module design, constructions, and testing for vacuum sweep dehumidification (VSD): part II, prototype performance vs variations in feed conditions,” J. Membr. Sci., vol. 576, pp. 118391, 2020.
  • L. Z. Zhang, “Numerical study of periodically fully developed flow and heat transfer in cross-corrugated triangular channels in transitional flow regime,” Numer. Heat Transf. A: Appl., vol. 48, no. 4, pp. 387–405, 2005. DOI: 10.1080/10407780590957314.
  • A. Ito, “Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane,” J. Membr. Sci., vol. 175, no. 1, pp. 35–42, 2000. DOI: 10.1016/S0376-7388(00)00404-X.
  • R. Xing et al., “Advanced thin zeolite/metal flat sheet membrane for energy efficient air dehumidification and conditioning,” Chem. Eng. Sci., vol. 104, pp. 596–609, 2013. DOI: 10.1016/j.ces.2013.08.061.
  • T. D. Bui, F. Chen, A. Nida, K. J. Chua, and K. C. Ng, “Experimental and modeling analysis of membrane-based air dehumidification,” Sep. Purif. Technol., vol. 144, pp. 114–122, 2015. DOI: 10.1016/j.seppur.2015.02.019.
  • C. H. Li, C. C. Chang, W. K. Li, and W. M. Yan, “Physical properties measurement and performance analysis of membranes for a multi-stage planar membrane dehumidifier,” Case Stud. Therm. Eng., vol. 15, p. 100516, 2019. DOI: 10.1016/j.csite.2019.100516.
  • D. T. Bui, A. Nida, K. C. Ng, and K. J. Chua, “Water vapor permeation and dehumidification performance of poly (vinyl alcohol)/lithium chloride composite membranes,” J. Membr. Sci., vol. 498, pp. 254–262, 2016. DOI: 10.1016/j.memsci.2015.10.021.
  • C. H. Li, C. Y. Chen, T. F. Yang, W. K. Li, and W. M. Yan, “Experimental study on heat and mass transfer of a multi-stage planar dehumidifier,” Int. J. Heat Mass Transf., vol. 148, p. 119104, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119104.
  • L. Z. Zhang, H. Li, and R. Qi, “Heat and mass transfer in PEM-based electrolytic air dehumidification element with an optimized anode-side electrochemical model,” Int. J. Heat Mass Transf., vol. 135, pp. 1152–1166, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.016.
  • H. Jafarian, H. Sayyaadi, and F. Torabi, “Numerical modeling and comparative study of different membrane-based liquid desiccant dehumidifiers,” Energy Convers. Manage., vol. 184, pp. 735–747, 2019. DOI: 10.1016/j.enconman.2019.01.099.
  • A. M. Jafarpour, F. Fazelpour, and S. A. Mousavi, “Performance optimization of polymeric porous membrane-based liquid desiccant air dehumidifier used in air conditioning system,” Int. J. Energy Environ. Eng., vol. 11, no. 1, pp. 55–71, 2020. DOI: 10.1007/s40095-019-00324-1.
  • N. B. Houreh and E. Afshari, “Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems,” Int. J. Hydrogen Energy, vol. 39, no. 27, pp. 14969–14979, 2014. DOI: 10.1016/j.ijhydene.2014.07.037.
  • W. M. Yan, C. Y. Lee, C. H. Li, W. K. Li, and S. Rashidi, “Study on heat and mass transfer of a planar membrane humidifier for PEM fuel cell,” Int. J. Heat Mass Transf., vol. 152, p. 119538, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119538.
  • V. Gurau, H. Liu, and S. Kakac, “Two‐dimensional model for proton exchange membrane fuel cells,” AIChE J., vol. 44, no. 11, pp. 2410–2422, 1998. DOI: 10.1002/aic.690441109.
  • Y. Wang and C. Y. Wang, “Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation,” J. Power Sources, vol. 147, no. 1–2, pp. 148–161, 2005. DOI: 10.1016/j.jpowsour.2005.01.047.
  • D. Kadylak and W. Mérida, “Experimental verification of a membrane humidifier model based on the effectiveness method,” J. Power Sources, vol. 195, no. 10, pp. 3166–3175, 2010. DOI: 10.1016/j.jpowsour.2009.12.005.
  • W. M. Yan et al., “Performance evaluation of a multi-stage plate-type membrane humidifier for proton exchange membrane fuel cell,” Energy Convers. Manage., vol. 176, pp. 123–130, 2018. DOI: 10.1016/j.enconman.2018.09.027.
  • A. El-Shazly, A. Al-Zahrani, Y. Al-Hamed, and S. Nosier, “Effect of fixed bed characteristics on the performance of pulsed water flow humidification-dehumidification solar desalination unit,” Desalin. Water Treat., vol. 51, no. 4–6, pp. 863–871, 2013. DOI: 10.1080/19443994.2012.714097.
  • E. Afshari and N. B. Houreh, “Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system,” Energy Convers. Manage., vol. 88, pp. 612–621, 2014. DOI: 10.1016/j.enconman.2014.08.067.
  • S. Roy, C. M. Hussain, and S. Mitra, “Poly (acrylamide-co-acrylic acid) hydrophilization of porous polypropylene membrane for dehumidification,” Sep. Purif. Technol., vol. 107, pp. 54–60, 2013. DOI: 10.1016/j.seppur.2012.12.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.