Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 80, 2021 - Issue 9
208
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis on heat transfer of parabolic solar collector operating with nanofluid using Eulerian two-phase approach

, &
Pages 475-484 | Received 31 May 2021, Accepted 28 Jun 2021, Published online: 22 Jul 2021

References

  • S.E. Ghasemi, M. Hatami, Solar radiation effects on MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet. Case Stud. Therm. Eng., vol. 25, Article ID 100898, 2021.
  • Z. Rongrong, Y. Yongping, Y. Qin and Z. Yong, Modeling and characteristic analysis of a solar parabolic trough system: Thermal oil as the heat transfer fluid. J. Renew. Energ., vol. 2013, Article ID 389514, 2013. DOI: https://doi.org/10.1155/2013/389514.
  • R. Tahtah, A. Bouchoucha, C. Abid, M. Kadja, and F. Benkafada, “Experimental study of heat transfer in parabolic trough solar receiver: Using two different heat transfer fluids,” AIP Conf. Proc. vol. 1814, 020051, 2017 DOI: https://doi.org/10.1063/1.4976270.
  • J. Subramani, P. K. Nagarajan, O. Mahian and R. Sathyamurthy, “Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime,” Renew. Energy, vol. 119, pp. 19–31, 2018. DOI: https://doi.org/10.1016/j.renene.2017.11.079.
  • N. Abed, I. Afgan, A. Cioncolini, H. Iacovides, A. Nasser and T. Mekhail, “Thermal performance evaluation of various nanofluids with non-uniform heating for parabolic trough collectors,” Case Stud. Therm. Eng., vol. 22, pp. 100769, 2020. DOI: https://doi.org/10.1016/j.csite.2020.100769.
  • S. E. Ghasemi and A. A. Ranjbar, “Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study,” J. Mol. Liq., vol. 222, pp. 159–166, 2016. DOI: https://doi.org/10.1016/j.molliq.2016.06.091.
  • S. E. Ghasemi, A. A. Ranjbar and A. Ramiar, “Numerical investigation of effect of Alwater nanofluid on performance of solar parabolic collector,” Nanomaterials, vol. 5, no. 14, pp. 100–107, 2013.
  • S. E. Ghasemi and G. R. Mehdizadeh Ahangar, “Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid,” Int. J. Nano Dimen., vol. 5, no. 3, pp. 233–240, 2014.
  • S. Nayerdinzadeh, M. Babadi Soultanzadeh, M. Haratian and A. Zamanimehr, “Experimental and numerical evaluation of thermal performance of parabolic solar collector using water/Al2O3 nanofluid: A case study,” Int. J. Thermophys., vol. 41, no. 5, pp. 59, 2020. DOI: https://doi.org/10.1007/s10765-020-02638-3.
  • K. Hong, Y. Yang, S. Rashidi, Y. Guan and Q. Xiong, “Numerical simulations of a Cu–water nanofluid based parabolic trough solar collector,” J Therm Anal Calorim, vol. 143, no. 6, pp. 4183–4195, 2021. DOI: https://doi.org/10.1007/s10973-020-09386-4.
  • S. E. Ghasemi and A. A. Ranjbar, “Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector,” Appl. Therm. Eng, vol. 118, pp. 807–816, 2017.
  • G. Sadeghi, H. Safarzadeh and M. Ameri, “Experimental and numerical investigations on performance of evacuated tube solar collectors with parabolic concentrator, applying synthesized Cu2O/distilled water nanofluid,” Energy Sustain. Develop., vol. 48, pp. 88–106, 2019. DOI: https://doi.org/10.1016/j.esd.2018.10.008.
  • S. E. Ghasemi and A. A. Ranjbar, “Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants,” Int. J. Hydrogen Energy, vol. 42, no. 34, pp. 21626–21634, 2017. DOI: https://doi.org/10.1016/j.ijhydene.2017.07.087.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat. Transf, vol. 11, no. 2, pp. 151–170, 1998. DOI: https://doi.org/10.1080/08916159808946559.
  • S. M. Yang and W. Q. Tao, Heat Transfer, 3rd ed. Higher Education Press, Beijing, China, 1998,
  • A. Einstein, Investigation on the Theory of Brownian Motion, 1926.
  • W. Yu and S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated hamiltoncrosser model,” J. Nanoparticle Res, vol. 6, no. 4, pp. 355–361, 2004. DOI: https://doi.org/10.1007/s11051-004-2601-7.
  • ANSYS Inc., Ansys CFX-solver Theory Guide, 2009.
  • A. Behzadmehr, M. Saffar-Avval and N. Galanis, “Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach,” Int. J. Heat Fluid Flow, vol. 28, no. 2, pp. 211–219, 2007. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2006.04.006.
  • M. Hejazian, M. K. Moraveji and A. Beheshti, “Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a horizontal tube,” Int. Commun. Heat Mass Transf, vol. 52, pp. 152–158, 2014. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2014.01.022.
  • S. Goktepe, K. Atalk and H. Ertrk, “Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube,” Int. J. Therm. Sci., vol. 80, pp. 83–92, 2014.
  • S. V. Patankar, 1980, Numerical Heat Transfer and Fluid Flow. Taylor & Francis Group, Milton Park.
  • L. Schiller and A. Naumann, “A drag coefficient correlation,” Z. Ver. Dtsch. Ing., vol. 77, pp. 318–320, 1935.
  • Y. L. He, J. Xiao, Z. D. Cheng and Y. B. Tao, “A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector,” Renew. Energy, vol. 36, no. 3, pp. 976–985, 2011. DOI: https://doi.org/10.1016/j.renene.2010.07.017.
  • Z. Cheng, Y. He, J. Xiao, Y. Tao and R. Xu, “Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector,” Int. Commun. Heat Mass Transf., vol. 37, no. 7, pp. 782–787, 2010. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.05.002.
  • M. Malekan, A. Khosravi and S. Syri, “Heat transfer modeling of a parabolic trough solar collector with working fluid of Fe3O4 and CuO/Therminol 66 nanofluids under magnetic field,” Appl. Therm. Eng., vol. 163, pp. 114435, 2019. DOI:https://doi.org/10.1016/j.applthermaleng.2019.114435.
  • I. Leinhard and J. Leinhard, A Heat Transfer Textbook, 4th ed., Philogiston Press, Saint Petersburg, 2012,
  • L. F. Moody, “Friction factors for pipe flow,” J. Heat Transf., vol. 66, no. 8, pp. 671–684, 1944.
  • H. R. Khakrah, A. Shamloo and S. Kazemzadeh Hannani, “Exergy analysis of parabolic trough solar collectors using Al2O3/Synthetic oil nanofluid,” Sol Energy, vol. 173, pp. 1236–1247, 2018. DOI: https://doi.org/10.1016/j.solener.2018.08.064.
  • S. Sadripour, A. A. Abbasian Arani and S. Kermani, “Energy and exergy analysis and optimization of a heat sink collector equipped with rotational obstacles,” AUT J Mech Eng, vol. 2, no. 1, pp. 39–50, 2018.
  • S.E. Ghasemi, A.A. Ranjbar, Thermal efficiency evaluation of solar rings in tubes, Eur. Phys. J. Plus, vol. 131, pp. X, 2016.
  • S.E. Ghasemi, A.A. Ranjbar, M.J. Hosseini, Thermal and hydrodynamic characteristics of water-based suspensions of Al2OO3 nanoparticles in a novel minichannel heat sink, J. Mol. Liq., vol. 230, pp. 550–556, 2017.
  • S.E. Ghasemi, A.A. Ranjbar, M.J. Hosseini, Numerical study on the convective heat transfer of nanofluid in a triangular minichannel heat sink using the Eulerian–Eulerian two-phase model, Numer. Heat Tr. A Appl., vol. 72, no. 2, pp. 185–196, 2017.
  • ASHRAE Standard 93-1986. (RA 91), Methods of Testing to Determine the Thermal Performance of Solar Collectors. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc., 1991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.