Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 82, 2022 - Issue 6
359
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation on direct contact condensation-induced water hammer in passive natural circulation system for offshore applications

, , , , &
Pages 317-334 | Received 09 Nov 2021, Accepted 12 May 2022, Published online: 13 Jun 2022

References

  • J. C. Sun and M. Ding, “Experimental research on the mechanisms of condensation induced water hammers in a natural circulation system,” Nucl. Eng. Tec., vol. 108, pp. 175–184, 2015.
  • K.-H. Lee, M.-G. Kim, J. Lee and P.-S. Lee, “Recent advances in ocean nuclear power plants,” Energies, vol. 8, no. 10, pp. 1092–11470, 2015. DOI: https://doi.org/10.3390/en81011470.
  • L. Liu and W. Z. Chen, “CFD analysis of steam condensation with air in the tubes bundle channel under natural convection conditions,” Ann. Nucl. Eneg., vol. 62, pp. 510–518, 2021.
  • J. C. Sun and M. Ding, “Effects of Direct Contact Condensation on Flow Characteristics of Natural Circulation System at Low Pressure,” Front. Energy. Res., vol. 8, pp. 173–180, 2020.
  • X. Hou, Z. Sun and W. Lei, “Capability of RELAP5 code to simulate the thermal-hydraulic characteristics of open natural circulation,” Ann. Nucl. Eneg., vol. 109, pp. 612–625, 2017. DOI: https://doi.org/10.1016/j.anucene.2017.06.010.
  • Y. Zhang, J. Buongiorno, M. Golay and N. Todreas, “Safety analysis of a 300-MW (electric) offshore floating nuclear power plant in marine environment,” Nucl. Technol., vol. 203, no. 2, pp. 129–145, 2018. DOI: https://doi.org/10.1080/00295450.2018.1433935.
  • J. Wang and T. Lu, “Temperature and pressure oscillations induced by steam direct contact condensation in a T-junction with porous inner-structures,” Int. J. Heat. Mass. Tranfer., vol. 168, pp. 120–133, 2021.
  • J. C. Sun and M. Ding, “Experimental research on characteristics of condensation induced water hammer in natural circulation systems,” Int. Commun. Heat. Mass., vol. 114, pp. 104–112, 2020.
  • A. Dudlik and H.-M. Prasser, “Water hammer and condensation hammer scenarios in power plants using new measurement system,” Forsch Ingenieurwes., vol. 73, no. 2, pp. 67–76, 2009. DOI: https://doi.org/10.1007/s10010-009-0100-9.
  • C. S. Martin, “Condensation-induced water hammer in a horizontal pipe,” Kerntechnik, vol. 77, no. 2, pp. 94–100, 2012. DOI: https://doi.org/10.3139/124.110237.
  • H.-S. Park, S.-W. Choi and H. C. No, “Direct-contact condensation of pure steam on co-current and counter-current stratified liquid flow in a circular pipe,” Int. J. Heat. Mass. Tranfer., vol. 52, no. 5–6, pp. 1112–1122, 2009. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.033.
  • A. B. Jackobek and P. Griffith, “Investigation of cold leg water hammer in a PWR due to the admission of Emergency Core Cooling (ECC) during a small break LOCA,” Osti. Cov., vol. 85, pp. 158–169, 1984.
  • Y. C. Chou and P. Griffith, “Admitting cold seawater into steam filled pipes without water hammer due to steam bubble collapse,” Nucl. Eng. Des., vol. 121, no. 3, pp. 367–378, 1990. DOI: https://doi.org/10.1016/0029-5493(90)90018-S.
  • M.-H. Chun and S.-O. Yu, “A parametric study and a guide chart to avoid condensation induced water hammer in a horizontal pipe,” Nucl. Eng. Des., vol. 201, no. 2–3, pp. 239–257, 2000. DOI: https://doi.org/10.1016/S0029-5493(00)00280-6.
  • H. Prasser and G. Baranyai, “Condensation caused by Cold water Injection into Main Steam-Line of VVER-440-type PWR-Quick-Look Report (QLR),” Technical report, 2004.
  • X. Hou, Z. Sun, J. Su and G. Fan, “An investigation on flashing instability induced water hammer in an open natural circulation system,” Prog. Nucl. Energ., vol. 93, pp. 418–430, 2016. DOI: https://doi.org/10.1016/j.pnucene.2016.09.015.
  • L. Wang, X. Yue, D. Chong, W. Chen and J. Yan, “Experimental investigation on the phenomenon of steam condensation induced water hammer in a horizontal pipe,” Exp. Therm. Fluid. Sci., vol. 91, pp. 451–458, 2018. DOI: https://doi.org/10.1016/j.expthermflusci.2017.10.036.
  • P. Datta, et al., “A numerical analysis onthe effect of inlet parameters for condensation induced water hammer,” Nucl. Eng. Des., vol. 304, pp. 50–62, 2016. DOI: https://doi.org/10.1016/j.nucengdes.2016.04.035.
  • D. T. Chong and W. B. Liu, “Oscillation characteristics of periodic condensation induced water hammer with steam discharged through a horizontal pipe,” Int. J. Heat. Mass. Tranfer., vol. 173, pp. 221–225, 2021.
  • J. C. Sun and M. Ding, “Experimental study on flow modes and transient characteristics in low-pressure equal-height-difference natural circulation system,” Ann. Nucl. Energy., vol. 151, pp. 256–270, 2021.
  • S. Li, Y. Jiang, W. Cai, H. Zhang and F. Li, “Numerical study on condensation heat transfer and pressure drops characteristics of methane upward flow in a spiral pipe under sloshing condition,” Int. J. Heat. Mass. Tranfer., vol. 129, pp. 310–325, 2019. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.108.
  • R. Szijártó, A. Badillo, B. Ničeno and H.-M. Prasser, “Condensation models for the water–steam interface and the volume of fluid method,” Int. J. Multiphas. Flow., vol. 93, pp. 63–70, 2017. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2017.04.002.
  • R. Szijártó, “Condensation of steam in horizontal pipes-model development and validation,” Ph.D. dissertation, ETH-Zurich, 2015.
  • D. Sun, J. Xu and Q. Chen, “Modeling of the evaporation and condensation phase-change problems with FLUENT,” Numer. Heat. Tr. B-Fund., vol. 66, no. 4, pp. 326–342, 2014. DOI: https://doi.org/10.1080/10407790.2014.915681.
  • D.-L. Sun, J.-L. Xu and L. Wang, “Development of a vapor–liquid phase change model for volume-of-fluid method in FLUENT,” Int. Commun. Heat. Mass., vol. 39, no. 8, pp. 1101–1106, 2012. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.07.020.
  • W. H. Lee, “A pressure iteration scheme for two-phase flow modeling,” Multiphase Transp., vol. 1, pp. 407–432, 1980.
  • L. Štrubelj and I. Tiselj, “Condensation of the steam in the horizontal steam line during cold water flooding,” Proceedings of the International Conference Nuclear Energy for New Europe,” Portorož, Slovenia, 2006.
  • V. P. Carey, Liquid–Vapor Phase–Change Phenomena, 2nd ed, New York, USA: Taylor and Francis Group, LLC, 2008. ISBN-987-1-59169-0351.
  • A. Badillo, “Quantitative phase-field modeling for boiling phenomena,” Phys. Rev., vol. 86, pp. 603–628, 2012.
  • L. Štrubelj and I. Tiselj, “Heat and mass transfer in the stratified flow with ECCS injection,” Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, pp. 1–9., 2007.
  • P. Datta, et al., “Modeling and analysis of condensation induced water hammer,” Numer. Heat. Tr. A-Appl., vol. 74, no. 2, pp. 975–986, 2018. DOI: https://doi.org/10.1080/10407782.2018.1505094.
  • T. Q. D. Pham and S. H. Choi, “Numerical analysis of direct contact condensation-induced water hammering effect using OpenFOAM in realistic steam pipes,” Int. J. Heat Mass Tranfer., vol. 171, pp. 121–132, 2021.
  • S. Q. Li, P. Wang and T. Lu, “CFD based approach for modeling steam-seawater direct contact condensation in subcooled water flow in a tee junction,” Prog. Nucl. Eneg., vol. 85, pp. 729–746, 2015. DOI: https://doi.org/10.1016/j.pnucene.2015.09.007.
  • R. K. Pal and R. Kumar, “Thermo-hydrodynamic modeling of flow boiling through the horizontal tube using Eulerian two-fluid modeling approach,” Int. J. Heat Mass Tranfer., vol. 168, pp. 141–152, 2021.
  • L. I. A. N. Shen, G. S. Triantafyllou and D. K. P. Yue, “Turbulent Diffusion near a Free Surface,” J. Fluid Mech., vol. 407, pp. 145–166, 2000. DOI: https://doi.org/10.1017/S0022112099007466.
  • E. D. Hughes and R. B. Duffey, “Direct Contact Condensation and Momentum Transfer in Turbulent Separated Flows,” Int. J. Multiphas., Flow., vol. 17, no. 5, pp. 599–619, 1991. DOI: https://doi.org/10.1016/0301-9322(91)90027-Z.
  • S.-C. Ceuca and D. Laurinavicius, “Experimental and numerical investigations on the direct contact condensation phenomenon in horizontal flow channels and its implications in nuclear safety,” Kerntechnik, vol. 81, no. 5, pp. 504–511, 2016. DOI: https://doi.org/10.3139/124.110729.
  • S.-C. Ceuca, “Computational simulations of direct contact condensation as the driving force for water hammer,” Ph.D. dissertation, Technische Universitat München, 2015.,
  • ANSYS FLUENT Users guide 17.7.5, 2020.
  • ANSYS FLUENT UDF manual 17.7.5, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.