Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 82, 2022 - Issue 12
244
Views
0
CrossRef citations to date
0
Altmetric
Articles

Passive enhancement of heat transfer in a microchannel by an adjoint system of cylinder and flexible beam

, , & ORCID Icon
Pages 765-787 | Received 19 Dec 2021, Accepted 25 May 2022, Published online: 21 Jun 2022

References

  • B. Hamza and A. H. Muhammad, “Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges,” J. Mol. Liq.vol. 281, pp. 598–633, 2019.
  • F. Wu, L. Li, J. Wang, X. Fan and C. Du, “Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge,” Int. J. Heat Mass Transfervol. 144, pp. 118625.1–118625.13, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118625.
  • E. N. Lightfoot, “Principles of Enhanced Heat Transfer,” in Chemical Engineering Science, vol. 50, R. L. Webb, Eds. New York: Wiley, 1994, pp. 3007–3550, 1995.
  • Mina, et al., “Convective heat transfer enhancement in a parallel plate channel by means of rotating or oscillating blade in the angular direction,” Appl. Therm. Eng. vol. 78, pp. 248–257, 2015.
  • M. A. Ismael, “Forced convection in partially compliant channel with two alternated baffles,” Int. J. Heat Mass Transfervol. 142, pp. 118455.1–118455.13, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118455.
  • D. G. Tatchell, “Handbook of single-phase convective heat Transfer Sadik Kaka, Ramesh K. Shah and Win Aung (editors) Wiley, New York, 1987,” Int. J. Heat Mass Transfervol. 32, no. 2, pp. 408–408, 1989. DOI: 10.1016/0017-9310(89)90187-7.
  • H. Y. Li and K. Y. Chen, “Thermal performance of plate-fin heat sinks under confined impinging jet conditions,” Int. J. Heat Mass Transfervol. 50, no. 9–10, pp. 1963–1970, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.024.
  • S. Karthikeyan, S. Senthilkumar, B. T. Kannan and U. Chandrasekhar, “Numerical analysis on effect of jet injection on vortex shedding for flow over a circular cylinder,” Arab. J. Sci. Eng.vol. 44, no. 2, pp. 1475–1488, 2019. DOI: 10.1007/s13369-018-3588-1.
  • D. K. Kim, S. J. Kim and J. K. Bae, “Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow,” Int. J. Heat Mass Transfervol. 52, no. 15–16, pp. 3510–3517, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.041.
  • Y. T. Yang and M. L. Hwang, “Numerical simulation of turbulent fluid flow and heat transfer characteristics in a rectangular porous channel with periodically spaced heated blocks,” Numer. Heat Transfer Appl.., Part A: Appl.vol. 54, no. 8, pp. 819–836, 2008. DOI: 10.1080/10407780802424387.
  • W. S. Fu and B. H. Tong, “Numerical investigation of heat transfer from a heated oscillating cylinder in a cross flow,” Int. J. Heat Mass Transfervol. 45, no. 14, pp. 3033–3043, 2002. DOI: 10.1016/S0017-9310(02)00016-9.
  • R. A. Lambert and R. H. Rangel, “The role of elastic flap deformation on fluid mixing in a microchannel,” Phys. Fluidsvol. 22, no. 5, pp. 052003–235, 2010. DOI: 10.1063/1.3410268.
  • M. Fiebig, “Vortices, generators and heat transfer,” Trans. Ichemevol. 76, no. 2, pp. 108–123, 1998. DOI: 10.1205/026387698524686.
  • M. Rahnama and H. Hadi-Moghaddam, “Numerical investigation of convective heat transfer in unsteady laminar flow over a square cylinder in a channel,” Heat Transfer Eng. vol. 26, no. 10, pp. 21–29, 2005. DOI: 10.1080/01457630500248521.
  • S. Turki, H. Abbassi and S. B. Nasrallah, “Two-dimensional laminar fluid flow and heat transfer in a channel with abuilt-in heated square cylinder,” Int. J. Therm. Sci. vol. 42, no. 12, pp. 1105–1113, 2003. DOI: 10.1016/S1290-0729(03)00091-7.
  • T. Icoz and Y. Jaluria, “Design optimization of size and geometry of vortex promoter in a two-dimensional channel,” J. Heat Transfervol. 128, no. 10, pp. 1081–1092, 2006. DOI: 10.1115/1.2345433.
  • H. Abbassi, S. Turki, Nasrallah and S. Ben, “Numerical investigation of forced convection in a horizontal channel with a built-in triangular prism,” J. Heat Transfervol. 40, no. 7, pp. 649–658, 2001. DOI: 10.1016/S1290-0729(01)01254-6.
  • H. Abbassi, S. Turki, Nasrallah and S. Ben, “Mixed convection in a plane channel with a built-in triangular prism,” Numer. Heat Transfervol. 39, pp. 307–320, 2001.
  • S. Nitin and R. P. Chhabra, “Non-isothermal flow of a power law fluid past a rectangular obstacle (of aspect ratio 1 × 2) in a channel: Drag and heat transfer,” Int. J. Eng. Sci.vol. 43, no. 8-9, pp. 707–720, 2005. DOI: 10.1016/j.ijengsci.2004.12.015.
  • M. Meis, F. Varas, A. Velázquez and J. M. Vega, “Heat transfer enhancement in micro-channels caused by vortex promoters,” Int. J. Heat Mass Transfervol. 53, no. 1–3, pp. 29–40, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.10.013.
  • S. G. Park, B. Kim, C. B. Chang, J. Ryu and H. J. Sung, “Enhancement of heat transfer by a self-oscillating inverted flag in a Poiseuille channel flow,” Int. J. Heat Mass Transfervol. 96, pp. 362–370, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.043.
  • J. B. Lee, S. G. Park, B. Kim, J. Ryu and H. J. Sung, “Heat transfer enhancement by flexible flags clamped vertically in a poiseuille channel flow,” Int. J. Heat Mass Transfervol. 107, pp. 391–402, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.057.
  • J. B. Lee, S. G. Park and H. J. Sung, “Heat transfer enhancement by asymmetrically clamped flexible flags in a channel flow,” Int. J. Heat Mass Transfervol. 116, pp. 1003–1015, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.094.
  • B. Y. Chen, J. Yang, Y. Z. Liu and H. J. Sung, “Heat transfer enhancement in a poiseuille channel flow by using multiple wall-mounted flexible flags,” Int. J. Heat Mass Transfervol. 163, pp. 120447–120457, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120447.
  • D. Abdoirahman, H. Soheil, A. Saharnaz and K. B. Cheong, “Enhancement of heat and mass transfer in a microchannel via passive oscillation of a flexible vortex generator,” Chem. Eng. Sci. vol. 207, pp. 556–580, 2019.
  • A. Samer, H. Charbel, M. Sébastien, L. Thierry and J. L. Harion, “Heat transfer and mixing enhancement by free elastic flaps oscillation,” Int. J. Heat Mass Transfervol. 85, pp. 250–264, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.122.
  • K. Khanafer, K. Vafai and M. Gaith, “Fluid–structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell,” Int. Commun. Heat Mass Transfervol. 53, no. 9-10, pp. 1646–1653, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.029.
  • X. Sun, Z. Ye, J. Li, K. Wen and H. Tian, “Forced convection heat transfer from a circular cylinder with a flexible fin,” Int. J. Heat Mass Transfervol. 128, pp. 319–334, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.08.123.
  • A. Bejan and A. D. Kraus, Heat Transfer Handbook. North Carolina: Wiley, 2003.
  • A. Sinha, K. A. Raman, H. Chattopadhyay and G. Biswas, “Effects of different orientations of winglet arrays on the performance of plate-fin heat exchangers,” Int. J. Heat Mass Transfervol. 57, no. 1, pp. 202–214, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.034.
  • A. Fujarra, C. P. Pesce, F. Flemming and C. Williamson, “Vortex-induced vibration of a flexible cantilever,” J. Fluids Struct. vol. 15, no. 3-4, pp. 651–658, 2001. DOI: 10.1006/jfls.2000.0368.
  • R. N. Govardhan and C. H. K. Williamson, “Vortex-induced vibrations of a sphere,” J. Fluid Mech. vol. 531, pp. 11–47, 2005. DOI: 10.1017/S0022112005003757.
  • M. D. Griffith, J. Leontini, M. C. Thompson and K. Hourigan, “Vortex shedding and three-dimensional behaviour of flow past a cylinder confined in a channel,” J. Fluids Struct. vol. 27, no. 5-6, pp. 855–860, 2011. DOI: 10.1016/j.jfluidstructs.2011.02.007.
  • J. P. Gomes and H. Lienhart, “Fluid–structure interaction-induced oscillation of flexible structures in laminar and turbulent flows,” J. Fluid Mech. vol. 715, pp. 537–572, 2013. DOI: 10.1017/jfm.2012.533.
  • M. L. Chinetti, E. D. Langre and F. Biolley, “Coupling of structure and wake oscillators in vortex-induced vibrations,” J. Fluids Struct.vol. 19, no. 2, pp. 123–140, 2004. DOI: 10.1016/j.jfluidstructs.2003.12.004.
  • N. Srinil, “Multi-mode interactions in vortex-induced vibrations of flexible curved/straight structures with geometric nonlinearities,” J. Fluids Struct.vol. 26, no. 7-8, pp. 1098–1122, 2010. DOI: 10.1016/j.jfluidstructs.2010.08.005.
  • N. Srinil and H. Zanganeh, “Modelling of coupled cross-flow/in-line vortex-induced vibrations using double duffing and van der pol oscillators,” Ocean Eng.vol. 53, pp. 83–97, 2012. DOI: 10.1016/j.oceaneng.2012.06.025.
  • L. Zovatto and G. Pedrizzetti, “Flow about a circular cylinder between parallel walls,” J. Fluid Mech.vol. 440, pp. 1–25, 2001. DOI: 10.1017/S0022112001004608.
  • F. Rehimi, F. Aloui, S. B. Nasrallah, L. Doubliez and J. Legrand, “Experimental investigation of a confined flow downstream of a circular cylinder centred between two parallel walls,” J. Fluids Struct.vol. 24, no. 6, pp. 855–882, 2008. DOI: 10.1016/j.jfluidstructs.2007.12.011.
  • J. Shi, J. Hu, S. R. Schafer and C. L. Chen, “Numerical study of heat transfer enhancement of channel via vortex-induced vibration,” Appl. Therm. Eng.vol. 70, no. 1, pp. 838–845, 2014. DOI: 10.1016/j.applthermaleng.2014.05.096.
  • J. Donea, A. Huerta, J. P. Ponthot and A. Rodríguez-Ferran, “Arbitrary Lagrangian Eulerian methods,” Am. Cancer Soc.vol. 1, pp. 1–21, 2004.
  • A. Placzek, J. F. Sigrist and A. Hamdouni, “Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations,” Comput. Fluidsvol. 38, no. 1, pp. 80–100, 2009. DOI: 10.1016/j.compfluid.2008.01.007.
  • ADINA User Interface Cammand Reference Manual Volume III: ADINA CFD&FSI Model Definition. K. J. Bathe / ADINA R&D, Inc, 2009.
  • ADINA Theory and Modeling Guide Volume III: ADINA CFD&FSI. Watertown: ADINA R& D, Inc, 2009.
  • Ž. Tuković and H. Jasak, “Updated lagrangian finite volume solver for large deformation dynamic response of elastic body,” Trans. FAMENAvol. 31, pp. 55–70, 2007.
  • E. S. Filippas, G. P. Papadakis and K. A. Belibassakis, “Free-surface effects on the performance of flapping-foil thruster for augmenting ship propulsion in waves,” JMSEvol. 8, no. 5, pp. 357–369, 2020. DOI: 10.3390/jmse8050357.
  • S. Turek and J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow,” Berlin, Heidelberg: Springer, 2006, pp. 371–385.
  • Incropera. “Fundamentals of heat and mass transfer 6th edition with introduction to heat transfer set,” Staff Gen. Res. Papersvol. 27, pp. 139–162, 1996.
  • P. Promvonge and C. Thianpong, “Thermal performance assessment of turbulent channel flows over different shaped ribs,” Int. Commun. Heat Mass Transfervol. 35, no. 10, pp. 1327–1334, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.07.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.