Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 82, 2022 - Issue 12
270
Views
3
CrossRef citations to date
0
Altmetric
Articles

Conjugate heat transfer in lattice frame materials based on novel unit cell topologies

&
Pages 788-801 | Received 22 Dec 2021, Accepted 25 May 2022, Published online: 21 Jun 2022

References

  • J. Banhart, “Manufacturing routes for metallic foams,” JOM., vol. 52, no. 12, pp. 22–27, 2000. DOI: 10.1007/s11837-000-0062-8.
  • V. V. Calmidi and R. L. Mahajan, “Forced convection in high porosity metal foams,” J. Heat Transfer., vol. 122, no. 3, pp. 557–565, 2000. DOI: 10.1115/1.1287793.
  • K. Boomsma, D. Poulikakos and F. Zwick, “Metal foams as compact high performance heat exchangers,” Mech. Mater., vol. 35, no. 12, pp. 1161–1176, 2003. DOI: 10.1016/j.mechmat.2003.02.001.
  • K. Boomsma and D. Poulikakos, “The effects of compression and pore size variations on the liquid flow characteristics in metal foams,” J. Fluids Eng., vol. 124, no. 1, pp. 263–272, 2002. DOI: 10.1115/1.1429637.
  • A. Bhattacharya, V. V. Calmidi and R. L. Mahajan, “Thermophysical properties of high porosity metal foams,” Int. J. Heat Mass Transfer., vol. 45, no. 5, pp. 1017–1031, 2002. DOI: 10.1016/S0017-9310(01)00220-4.
  • S. Cunsolo, M. Iasiello, M. Oliviero, N. Bianco, W. K. Chiu and V. Naso, “Lord Kelvin and Weaire–Phelan foam models: Heat transfer and pressure drop,” J. Heat Transfer., vol. 138, no. 2, pp. 022601, 2016. DOI: 10.1115/1.4031700.
  • J. Broughton and Y. K. Joshi, “Comparison of single-phase convection in additive manufactured versus traditional metal foams,” J. Heat Transfer., vol. 142, no. 8, pp. 082201, 2020. DOI: 10.1115/1.4046972.
  • K. Vafai and S. Kim, “On the limitations of the Brinkman-Forchheimer-extended Darcy equation,” Int. J. Heat Fluid Flow, vol. 16, no. 1, pp. 11–15, 1995. DOI: 10.1016/0142-727X(94)00002-T.
  • K. Vafai, “Convective flow and heat transfer in variable-porosity media,” J. Fluid Mech., vol. 147, no. 1, pp. 233–259, 1984. DOI: 10.1017/S002211208400207X.
  • K. Vafai and C. L. Tien, “Boundary and inertia effects on flow and heat transfer in porous media,” Int. J. Heat Mass Transfer., vol. 24, no. 2, pp. 195–203, 1981. DOI: 10.1016/0017-9310(81)90027-2.
  • A. Amiri and K. Vafai, “Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media,” Int. J. Heat Mass Transfer., vol. 37, no. 6, pp. 939–954, 1994. DOI: 10.1016/0017-9310(94)90219-4.
  • K. Boomsma, D. Poulikakos and Y. Ventikos, “Simulations of flow through open cell metal foams using an idealized periodic cell structure,” Int. J. Heat Fluid Flow, vol. 24, no. 6, pp. 825–834, 2003. DOI: 10.1016/j.ijheatfluidflow.2003.08.002.
  • P. Singh, K. Nithyanandam and R. L. Mahajan, “An experimental and numerical investigation of forced convection in high porosity aluminum foams subjected to jet array impingement in channel-flow,” Int. J. Heat Mass Transfer., vol. 149, pp. 119107, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119107.
  • S. Madhavan, P. Singh and S. Ekkad, “Jet impingement heat transfer enhancement by packing high-porosity thin metal foams between jet exit plane and target surface,” J. Thermal Sci. Engng Appl., vol. 11, no. 6, pp. 061016, 2019. DOI: 10.1115/1.4043470.
  • V. S. Sambamurthy, S. Madhavan, P. Singh and S. V. Ekkad, “Array jet impingement on high porosity thin metal foams: effect of foam height, pore-density, and spent air crossflow scheme on flow distribution and heat transfer,” J. Heat Transfer., vol. 142, no. 11, pp. 112301, 2020. DOI: 10.1115/1.4047560.
  • I. Kaur and P. Singh, “Critical evaluation of additively manufactured metal lattices for viability in advanced heat exchangers,” Int. J. Heat Mass Transfer, vol. 168, pp. 120858, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120858.
  • I. Kaur and P. Singh, “State-of-the-art in heat exchanger additive manufacturing,” Int. J. Heat Mass Transfer, vol. 178, pp. 121600, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121600.
  • T. Kim, H. P. Hodson and T. J. Lu, “Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material,” Int. J. Heat Mass Transfer, vol. 47, no. 6-7, pp. 1129–1140, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.10.012.
  • H. Yan, X. Yang, T. Lu and G. Xie, “Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core,” Appl. Thermal Engng., vol. 127, pp. 1293–1304, 2017. DOI: 10.1016/j.applthermaleng.2017.08.081.
  • Y. Li, G. Xie, S. K. Boetcher and H. Yan, “Heat transfer enhancement of X-lattice-cored sandwich panels by introducing pin fins, dimples or protrusions,” Int. J. Heat Mass Transfer., vol. 141, pp. 627–642, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.07.009.
  • D. Liang, W. Bai, W. Chen and M. K. Chyu, “Investigating the effect of element shape of the face-centered cubic lattice structure on the flow and endwall heat transfer characteristics in a rectangular channel,” Int. J. Heat Mass Transfer., vol. 153, pp. 119579, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119579.
  • I. Kaur and P. Singh, “Flow and thermal transport through unit cell topologies of cubic and octahedron families,” Int. J. Heat Mass Transfer., vol. 158, pp. 119784, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119784.
  • A. Chaudhari, P. Ekade and S. Krishnan, “Experimental investigation of heat transfer and fluid flow in octet-truss lattice geometry,” Int. J. Thermal Sci., vol. 143, pp. 64–75, 2019. DOI: 10.1016/j.ijthermalsci.2019.05.003.
  • I. Kaur and P. Singh, “Numerical investigation on conjugate heat transfer in octet-shape-based single unit cell thick metal foam,” Int. Commun. Heat Mass Transfer., vol. 121, pp. 105090, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105090.
  • T. Kim, H. P. Hodson and T. J. Lu, “Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material,” Int. J. Heat Mass Transfer., vol. 48, no. 19-20, pp. 4243–4264, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.04.026.
  • T. Kim, C. Y. Zhao, T. J. Lu and H. P. Hodson, “Convective heat dissipation with lattice-frame materials,” Mech. Mater., vol. 36, no. 8, pp. 767–780, 2004. DOI: 10.1016/j.mechmat.2003.07.001.
  • K. N. Son, J. A. Weibel, V. Kumaresan and S. V. Garimella, “Design of multifunctional lattice-frame materials for compact heat exchangers,” Int. J. Heat Mass Transfer., vol. 115, pp. 619–629, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.073.
  • N. Wang, I. Kaur, P. Singh and L. Li, “Prediction of effective thermal conductivity of porous lattice structures and validation with additively manufactured metal foams,” Appl. Thermal Engng, vol. 187, pp. 116558, 2021. DOI: 10.1016/j.applthermaleng.2021.116558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.