Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 3
233
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Numerical study to recover low-grade waste heat using pulsating heat pipes and a comparative study on performance of conventional pulsating heat pipe and additional branch pulsating heat pipe

ORCID Icon, ORCID Icon & ORCID Icon
Pages 248-264 | Received 23 Dec 2021, Accepted 25 May 2022, Published online: 29 Jun 2022

References

  • H. Jouhara et al., “Waste heat recovery technologies and applications,” Therm. Sci. Eng. Prog., vol. 6, pp. 268–289, 2018. DOI: 10.1016/j.tsep.2018.04.017.
  • K.-S. Yang, M.-Y. Jiang, C.-Y. Tseng, S.-K. Wu, and J.-C. Shyu, “Experimental investigation on the thermal performance of pulsating heat pipe heat exchangers,” Energies, vol. 13, no. 1, pp. 269, 2020. DOI: 10.3390/en13010269.
  • A. Elson, R. Tidball, and A. Hampson, Waste Heat to Power Market Assessment. Oak Ridge, TN: Build. Technol. Res. Integr. Cent. (BTRIC), Oak Ridge Natl. Lab., 2015.
  • M. I. Rakib, R. Saidur, E. N. Mohamad, and A. M. Afifi, “Waste-heat utilization–the sustainable technologies to minimize energy consumption in Bangladesh textile sector,” J. Clean. Prod., vol. 142, pp. 1867–1876, 2017. DOI: 10.1016/j.jclepro.2016.11.098.
  • R. Law, A. Harvey, and D. Reay, “Opportunities for low-grade heat recovery in the UK food processing industry,” Appl. Therm. Eng., vol. 53, no. 2, pp. 188–196, 2013. DOI: 10.1016/j.applthermaleng.2012.03.024.
  • A. Luo et al., “Mapping potentials of low-grade industrial waste heat in Northern China,” Resour. Conserv. Recycl., vol. 125, pp. 335–348, 2017. DOI: 10.1016/j.resconrec.2017.06.018.
  • I. Johnson, W. T. Choate, and A. Davidson, Waste Heat Recovery. Technology and Opportunities in US Industry. Laurel, MD: BCS, Inc., 2008.
  • D. Liu, G.-F. Tang, F.-Y. Zhao, and H.-Q. Wang, “Modeling and experimental investigation of looped separate heat pipe as waste heat recovery facility,” Appl. Therm. Eng., vol. 26, no. 1718, pp. 2433–2441, 2006. DOI: 10.1016/j.applthermaleng.2006.02.012.
  • D. Liu, Y. Cai, and F.-Y. Zhao, “Optimal design of thermoelectric cooling system integrated heat pipes for electric devices,” Energy, vol. 128, pp. 403–413, 2017. DOI: 10.1016/j.energy.2017.03.120.
  • X. Sun, L. Zhang, and S. Liao, “Performance of a thermoelectric cooling system integrated with a gravity-assisted heat pipe for cooling electronics,” Appl. Therm. Eng., vol. 116, pp. 433–444, 2017. DOI: 10.1016/j.applthermaleng.2016.12.094.
  • W. Srimuang and P. Amatachaya, “A review of the applications of heat pipe heat exchangers for heat recovery,” Renew. Sustain. Energy Rev., vol. 16, no. 6, pp. 4303–4315, 2012. DOI: 10.1016/j.rser.2012.03.030.
  • E. Tian, Y.-L. He, and W.-Q. Tao, “Research on a new type waste heat recovery gravity heat pipe exchanger,” Appl. Energy, vol. 188, pp. 586–594, 2017. DOI: 10.1016/j.apenergy.2016.12.029.
  • D. Brough et al., “An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger,” Energy, vol. 208, pp. 118325, 2020. DOI: 10.1016/j.energy.2020.118325.
  • X. Liu et al., “Application of an anti-gravity oscillating heat pipe on enhancement of waste heat recovery,” Energy Convers. Manag., vol. 205, pp. 112404, 2020. DOI: 10.1016/j.enconman.2019.112404.
  • V. M. Patel and H. B. Mehta, “Experimental investigations on the effect of influencing parameters on operating regime of a closed loop pulsating heat pipe,” J. Enhanc. Heat Transf., vol. 26, pp. 333–344, 2019. DOI: 10.1615/JEnhHeatTransf.2019027909.
  • H. Han, X. Cui, Y. Zhu, and S. Sun, “A comparative study of the behavior of working fluids and their properties on the performance of pulsating heat pipes (PHP),” Int. J. Therm. Sci., vol. 82, pp. 138–147, 2014. DOI: 10.1016/j.ijthermalsci.2014.04.003.
  • P. R. Pachghare and A. M. Mahalle, “Thermo-hydrodynamics of closed loop pulsating heat pipe: An experimental study,” J. Mech. Sci. Technol., vol. 28, no. 8, pp. 3387–3394, 2014. DOI: 10.1007/s12206-014-0751-9.
  • J. Qu, H. Wu, and P. Cheng, “Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes,” Int. J. Heat Mass Transf., vol. 55, no. 2122, pp. 6109–6120, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.06.024.
  • C.-I. Chao et al., “Performance tests of defrosting plates designed with a pulsating heat pipe (PHP) as the heat carrier,” J. Enhanc. Heat Transf., vol. 20, pp. 527–541, 2013. DOI: 10.1615/JEnhHeatTransf.2015007637.
  • V. K. Karthikeyan, K. Ramachandran, B. C. Pillai, and A. B. Solomon, “Effect of number of turns on the temperature pulsations and corresponding thermal performance of pulsating heat pipe,” J. Enhanc. Heat Transf., vol. 20, pp. 443–452, 2013. DOI: 10.1615/JEnhHeatTransf.2014010509.
  • S. Thongdaeng, S. Rittidech, and B. Bubphachot, “Flow patterns and heat-transfer characteristics of a top heat mode closed-loop oscillating heat pipe with check valves (THMCLOHP/CV),” J. Engin. Thermophys., vol. 21, no. 4, pp. 235–247, 2012. DOI: 10.1134/S1810232812040029.
  • S. M. Thompson, H. B. Ma, and C. Wilson, “Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves,” Exp. Therm. Fluid Sci., vol. 35, no. 7, pp. 1265–1273, 2011. DOI: 10.1016/j.expthermflusci.2011.04.014.
  • M. Ebrahimi, M. B. Shafii, and M. A. Bijarchi, “Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels,” Appl. Therm. Eng., vol. 90, pp. 838–847, 2015. DOI: 10.1016/j.applthermaleng.2015.07.040.
  • K. Satyanarayana, N. Reddy, and S. Venugopal, “Numerical investigation of single turn pulsating heat pipe with additional branch for the enhancement of heat transfer coefficient and flow velocity,” Heat Transf. Res., vol. 52, pp. 45–62, 2021. DOI: 10.1615/HeatTransRes.2021037196.
  • E. Sedighi, A. Amarloo, and B. Shafii, “Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section,” Int. J. Heat Mass Transf., vol. 126, pp. 431–441, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.047.
  • S. M. Pouryoussefi and Y. Zhang, “Numerical investigation of chaotic flow in a 2D closed-loop pulsating heat pipe,” Appl. Therm. Eng., vol. 98, pp. 617–627, 2016. DOI: 10.1016/j.applthermaleng.2015.12.097.
  • J. Wang, H. Ma, and Q. Zhu, “Effects of the evaporator and condenser length on the performance of pulsating heat pipes,” Appl. Therm. Eng., vol. 91, pp. 1018–1025, 2015. DOI: 10.1016/j.applthermaleng.2015.08.106.
  • F. Xie, X. Li, P. Qian, Z. Huang, and M. Liu, “Effects of geometry and multisource heat input on flow and heat transfer in single closed-loop pulsating heat pipe,” Appl. Therm. Eng., vol. 168, pp. 114856, 2020. DOI: 10.1016/j.applthermaleng.2019.114856.
  • R. T. Dobson and T. M. Harms, “Lumped parameter analysis of closed and open oscillatory heat pipes,” presented at the Proc. 11th Int. Heat Pipe Conf, Tokyo, Japan, 1999, pp. 137–142.
  • K. R. Sagar, H. B. Naik, and H. B. Mehta, “Numerical study of liquid nitrogen based pulsating heat pipe for cooling superconductors,” Int. J. Refrig., vol. 122, pp. 33–46, 2021. DOI: 10.1016/j.ijrefrig.2020.10.033.
  • Z. Lin, S. Wang, R. Shirakashi, and L. W. Zhang, “Simulation of a miniature oscillating heat pipe in bottom heating mode using CFD with unsteady modeling,” Int. J. Heat Mass Transf., vol. 57, no. 2, pp. 642–656, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.09.007.
  • J. Wang, J. Xie, and X. Liu, “Investigation of wettability on performance of pulsating heat pipe,” Int. J. Heat Mass Transf., vol. 150, pp. 119354, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119354.
  • B. Markal and R. Varol, “Thermal investigation and flow pattern analysis of a closed-loop pulsating heat pipe with binary mixtures,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, pp. 1–18, 2020.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • N. Saha, P. K. Das, and P. K. Sharma, “Influence of process variables on the hydrodynamics and performance of a single loop pulsating heat pipe,” Int. J. Heat Mass Transf., vol. 74, pp. 238–250, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.067.
  • A. Takawale et al., “A comparative study of flow regimes and thermal performance between flat plate pulsating heat pipe and capillary tube pulsating heat pipe,” Appl. Therm. Eng., vol. 149, pp. 613–624, 2019. DOI: 10.1016/j.applthermaleng.2018.11.119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.