Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 3
173
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A critique on “An efficient numerical model for liquid water uptake in porous material and its parameter estimation”

ORCID Icon
Pages 304-314 | Received 07 Jan 2022, Accepted 25 May 2022, Published online: 27 Jun 2022

References

  • A. Jumabekova, et al., “An efficient numerical model for liquid water uptake in porous material and its parameter estimation,” Numer. Heat Transfer, Part A, vol. 75, no. 2, pp. 110–136, 2019. DOI: 10.1080/10407782.2018.1562739.
  • J. Berger, S. Gasparin, D. Dutykh, and N. Mendes, “Accurate numerical simulation of moisture front in porous material,” Build. Environ., vol. 118, pp. 211–224, 2017. DOI: 10.1016/j.buildenv.2017.03.016.
  • J. Berger, S. Gasparin, D. Dutykh, and N. Mendes, “On the solution of coupled heat and moisture transport in porous material,” Transp. Porous Med., vol. 121, no. 3, pp. 665–702, 2018. DOI: 10.1007/s11242-017-0980-3.
  • J. Berger, D. Dutykh, N. Mendes, and B. Rysbaiuly, “A new model for simulating heat, air and moisture transport in porous building materials,” Int. J. Heat Mass Transfer, vol. 134, pp. 1041–1060, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.025.
  • J. Berger, D. Dutykh, N. Mendes, and L. Gosse, “ An efficient numerical model for the simulation of coupled heat, air, and moisture transfer in porous media,” Eng. Rep., vol. 2, p. e12099, 2020.
  • J. Berger, T. Busser, D. Dutykh, and N. Mendes, “On the estimation of moisture permeability and advection coefficients of a wood fibre material using the optimal experiment design approach,” Exp. Therm. Fluid Sci., vol. 90, pp. 246–259, 2018. DOI: 10.1016/j.expthermflusci.2017.07.026.
  • Experimental Thermal and Fluid Science, “Retraction notice to “On the estimation of moisture permeability and advection coefficients of a wood fibre material using the optimal experiment design approach” [Exp. Therm. Fluid Sci. 90 (2017) 246–259],” Exp. Therm. Fluid Sci., vol. 113, pp. 109808, 2020.
  • T. Busser, et al., “Dynamic experimental method for identification of hygric parameters of a hygroscopic material,” Build. Environ., vol. 131, pp. 197–209, 2018. DOI: 10.1016/j.buildenv.2018.01.002.
  • J. Berger, T. Busser, D. Dutykh, and N. Mendes, “An efficient method to estimate sorption isotherm curve coefficients,” Inverse Probl. Sci. Eng., vol. 27, no. 6, pp. 735–772, 2019. DOI: 10.1080/17415977.2018.1495720.
  • C.-E. Hagentoft, et al., “Assessment method of numerical prediction models for combined heat, air and moisture transfer in building components: Benchmarks for one-dimensional cases,” J. Therm. Envelope Build. Sci., vol. 27, no. 4, pp. 327–352, 2004. DOI: 10.1177/1097196304042436.
  • European Standards, “CSN EN 15026 Hygrothermal performance of building components and building elements – Assessment of moisture transfer by numerical simulation,” 2007.
  • H. Janssen, B. Blocken, and J. Carmeliet, “Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation,” Int. J. Heat Mass Transfer, vol. 50, no. 5–6, pp. 1128–1140, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.06.048.
  • C. Hall, “Water movement in porous building materials—I. Unsaturated flow theory and its applications,” Build. Environ., vol. 12, no. 2, pp. 117–125, 1977. DOI: 10.1016/0360-1323(77)90040-3.
  • J. Carmeliet and S. Roels, “Determination of the isothermal moisture transport properties of porous building materials,” J. Therm. Envelope Build. Sci., vol. 24, no. 3, pp. 183–210, 2001. DOI: 10.1106/Y6T2-9LLP-04Y5-AN6T.
  • M. Islahuddin and H. Janssen, “Pore-structure-based determination of unsaturated hygric properties of porous materials,” Transp. Porous Med., vol. 130, no. 3, pp. 675–698, 2019. DOI: 10.1007/s11242-019-01334-7.
  • J. Zhao, R. Plagge, N. M. Ramos, M. L. Simões, and J. Grunewald, “Application of clustering technique for definition of generic objects in a material database,” J. Build. Phys., vol. 39, no. 2, pp. 124–146, 2015. DOI: 10.1177/1744259115588013.
  • J. Crank, The Mathematics of Diffusion. Oxford, UK: Oxford University Press, 1979,
  • J. Carmeliet, et al., “Determination of the liquid water diffusivity from transient moisture transfer experiments,” J. Therm. Envelope Build. Sci., vol. 27, no. 4, pp. 277–305, 2004. DOI: 10.1177/1097196304042324.
  • Delpin, Institute for Building Climatology, Dresden University of Technology, Dresden, Germany [online], Available: http://bauklimatik-dresden.de/delphin/index.php?aLa=en. Accessed: January 6, 2021.
  • C. Feng and H. Janssen, “Hygric properties of porous building materials (III): Impact factors and data processing methods of the capillary absorption test,” Build. Environ., vol. 134, pp. 21–34, 2018. DOI: 10.1016/j.buildenv.2018.02.038.
  • S. Kamaran, S. Ersahin, and H. Gunal, “ Firing temperature and firing timing influence on mechanical and physical properties of clay bricks,” J. Sci. Ind. Res., vol. 65, pp. 153–159, 2006.
  • I. Götschel, Y. Hayashi, K. Kakimoto, and A. Roosen, “Tape casting of Al203, MgO, and MgAl2O4 for the manufacture of multilayer composites for refractory applications,” Int. J. Appl. Ceram. Technol., vol. 9, no. 2, pp. 329–340, 2012. DOI: 10.1111/j.1744-7402.2011.02664.x.
  • A. M. Sanchez, “An evaluation of the physical effects of sandblasting on architectural brick,” Master’s thesis, University of Pennsylvania, Philadelphia, PA, 1999.
  • M. A. Wilson, W. D. Hoff, and C. Hall, “Water movement in porous building materials—XIV. Absorption into a two-layer composite (SA < SB,),” Build. Environ, vol. 30, pp. 221–227, 1995.
  • C. Feng and H. Janssen, “ Hygric properties of porous building materials (VII): Full-range benchmark characterizations of three materials,” Build. Environ., vol. 195, no. 107727, pp. 107727, 2021. DOI: 10.1016/j.buildenv.2021.107727.
  • W. Yan, et al., “Preparation and characterization of porous MgO–Al2O3 refractory aggregates using an in-situ decomposition pore-forming technique,” Ceram. Int., vol. 41, no. 1, pp. 515–520, 2015. DOI: 10.1016/j.ceramint.2014.08.099.
  • X. Yang, et al., “ Influence of pore size distribution of alumina brick on cold crushing strength by grey system theory,” in Proceedings of Unified International Technical Conference on Refractories, 2017.
  • V. Y. Kulikov, S. S. Kvon, A. Z. Issagulov, and S. K. Arinova, “Studying refractory bricks structure impact on their performance properties,” Metalurgija, vol. 58, pp. 283–286, 2019.
  • Y. A. Villagrán Zaccardi, N. M. Alderete, and N. De Belie, “Improved model for capillary absorption in cementitious materials: Progress over the fourth root of time,” Cem. Concr. Res., vol. 100, pp. 153–165, 2017. DOI: 10.1016/j.cemconres.2017.07.003.
  • P. Ren, C. Feng, and H. Janssen, “Hygric properties of porous building materials (V): Comparison of different methods to determine moisture diffusivity,” Build. Environ., vol. 164, no. 106344, pp. 106344, 2019. DOI: 10.1016/j.buildenv.2019.106344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.