Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 1
157
Views
3
CrossRef citations to date
0
Altmetric
Articles

Magneto-convection in an anisotropic porous cavity due to nonuniform heat flux at bottom wall

ORCID Icon & ORCID Icon
Pages 1-15 | Received 09 Apr 2022, Accepted 18 Jul 2022, Published online: 08 Aug 2022

References

  • R. A. Wooding, “Large scale geothermal field parameters and convection theory,” Second workshop geothermal reservoir engineering, Stanford: Stanford University, pp. 339–345, Dec. 1–3, 1976.
  • A. Koponen, et al., “Permeability of three dimensional random fiber webs,” Phys. Rev. Lett., vol. 80, no. 4, pp. 716–719, 1998. DOI: 10.1103/PhysRevLett.80.716.
  • W. J. Chang and C. F. Hsiao, “Natural convection in a vertical cylinder filled with anisotropic porous media,” Int. J. Heat Mass Trans., vol. 36, pp. 3361–3367, 1993.
  • M. Mishra, P. K. Das and S. Sarangi, “Transient behavior of crossflow heat exchangers due to sinusoidal excitation,” ASME J. Heat Trans., vol. 132, pp. 091801–1, 2010.
  • H. Chandra, P. Bera and A. K. Sharma, “Natural convection in a square cavity filled with an anisotropic porous medium due to sinusoidal heat flux on horizontal walls,” Numer. Heat Trans., Part A, vol. 77, no. 3, pp. 317–341, 2020. DOI: 10.1080/10407782.2019.1690348.
  • C. J. Hsu, “Heat transfer in a round tube with sinusoidal wall heat flux distribution,” AIChE J., vol. 11, no. 4, pp. 690–695, 1965. DOI: 10.1002/aic.690110423.
  • A. Barletta and E. Zanchini, “Laminar forced convection with sinusoidal wall heat flux distribution: Axially periodic regime,” Heat Mass Trans., vol. 31, no. 1–2, pp. 41–48, 1995. DOI: 10.1007/BF02537420.
  • N. H. Saeid, “Natural convection in porous cavity with sinusoidal bottom wall temperature variation,” Int. Comm. Heat Mass Trans., vol. 32, no. 3–4, pp. 454–463, 2005. DOI: 10.1016/j.icheatmasstransfer.2004.02.018.
  • Y. Varol, H. F. Oztop and I. Pop, “Numerical analysis of natural convection for a porous rectangular enclosure with sinusoidally varying temperature profile on the bottom wall,” Int. Comm. Heat Mass Trans., vol. 35, no. 1, pp. 56–64, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.05.015.
  • H. T. Cheong, Z. Siri and S. Sivasankaran, “Effect of aspect ratio on natural convection in an inclined rectangular enclosure with sinusoidal boundary condition,” Int. Comm. Heat Mass Trans., vol. 45, pp. 75–85, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.04.017.
  • S. Sivasankaran and M. Bhuvaneswari, “Natural convection in a porous cavity with sinusoidal heating on both sidewalls,” Numer. Heat Trans., Part A, vol. 63, no. 1, pp. 14–30, 2013. DOI: 10.1080/10407782.2012.715985.
  • M. Sheikholeslami and A. J. Chamkha, “Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall,” Numer. Heat Trans., Part A, vol. 69, no. 7, pp. 781–793, 2016. DOI: 10.1080/10407782.2015.1090819.
  • A. I. Alsabery, A. J. Chamkha, H. Saleh and I. Hashim, “Heat line visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls,” Int. J. Heat Mass Trans., vol. 100, pp. 835–850, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.031.
  • F. Wu, G. Wang and W. Zhou, “Buoyancy induced convection in a porous cavity with sinusoidally and partially thermally active sidewalls under local thermal non-equilibrium condition,” Int. Commun. Heat Mass Trans., vol. 75, pp. 100–114, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.03.026.
  • F. Wu, D. Lu and G. Wang, “Numerical analysis of natural convection in a porous cavity with the sinusoidal thermal boundary condition using a thermal non-equilibrium model,” Numer. Heat Trans., Part A, vol. 69, no. 11, pp. 1280–1296, 2016. DOI: 10.1080/10407782.2015.1127025.
  • F. Wu, G. Wang and W. Zhou, “Aspect ratio effect on natural convection in a square enclosure with a sinusoidal active thermal wall using a thermal non-equilibrium model,” Numer. Heat Trans., Part A, vol. 70, no. 3, pp. 310–329, 2016. DOI: 10.1080/10407782.2016.1173474.
  • A. I. Alsabery, A. J. Chamkha, I. Hashim and P. G. Siddheshwar, “Effects of nonuniform heating and wall conduction on natural convection in a square porous cavity using LTNE model,” ASME J. Heat Trans., vol. 139, pp. 122008–1, 2017.
  • A. I. Alsabery, A. J. Chamkha, H. Saleh, I. Hashim and B. Chanane, “Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity,” Physica A., vol. 470, pp. 20–38, 2017. DOI: 10.1016/j.physa.2016.11.107.
  • D. S. Cimpean, C. Revnic and I. Pop, “Natural convection in a square inclined cavity filled with a porous medium with sinusoidal temperature distribution on both side walls,” Trans. Porous Media., vol. 129, pp. 1–14, 2019.
  • A. Kumar and P. Bera, “Natural convection in an anisotropic porous enclosure due to nonuniform heating from the bottom wall,” ASME J. Heat Trans., vol. 131, pp. 072601–1, 2009.
  • M. K. Khandelwal, P. Bera and A. Chakrabati, “Influence of periodicity of sinusoidal bottom boundary condition on the natural convection in porous enclosure,” Int. J. Heat Mass Trans., vol. 55, no. 11–12, pp. 2889–2900, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.02.028.
  • N. Nithyadevi, P. Kandaswamy and S. M. Sundari, “Magnetoconvection in a square cavity with partially active vertical walls: Time periodic boundary condition,” Int. J. Heat Mass Transf., vol. 52, no. 7-8, pp. 1945–1953, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.08.039.
  • B. S. Bhadauria and A. K. Srivastava, “Magneto-double diffusive convection in an electrically conducting-fluid-saturated porous medium with temperature modulation of the boundaries,” Int. J. Heat Mass Trans., vol. 53, no. 11-12, pp. 2530–2538, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.025.
  • S. Sivasankaran, A. Malleswaran, J. Lee and P. Sundar, “Hydro-magnetic combined convection in a lid-driven cavity with sinusoidal boundary conditions on both sidewalls,” Int. J. Heat Mass Trans., vol. 54, no. 1-3, pp. 512–525, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.018.
  • S. E. Ahmed, M. A. Mansour and A. Mahdy, “MHD mixed convection in an inclined lid-driven cavity with opposingthermal buoyancy force: Effect of non-uniform heating on both sidewalls,” Nucl. Eng. Design., vol. 265, pp. 938–948, 2013. DOI: 10.1016/j.nucengdes.2013.06.023.
  • B. Pekmen and M. Tezer-Sezgin, “MHD flow and heat transfer in a lid-driven porous enclosure,” Comput. Fluid., vol. 89, pp. 191–199, 2014. DOI: 10.1016/j.compfluid.2013.10.045.
  • M. Sheikholeslami, M. G. Bandpy, R. Ellahi and A. Zeeshan, “Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces,” J. Magnetism Magnet. Mater., vol. 369, pp. 69–80, 2014. DOI: 10.1016/j.jmmm.2014.06.017.
  • M. Sheikholeslami and R. Ellahi, “Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid,” Int. J. Heat Mass Trans, vol. 89, pp. 799–808, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.110.
  • E. Colak, H. F. Oztop and O. Ekici, “MHD mixed convection in a chamfered lid-driven cavity with partial heating,” Int. J. Heat Mass Trans., vol. 156, pp. 119901, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119901.
  • P. Mondal and T. R. Mahapatra, “MHD double-diffusive mixed convection and entropy generation of nanofluid in a trapezoidal cavity,” Int. J. Mech. Sci., vol. 208, pp. 106665, 2021. DOI: 10.1016/j.ijmecsci.2021.106665.
  • M. A. Qureshi, S. Hussain and M. A. Sadiq, “Numerical simulations of MHD mixed convection of hybrid nanofluid flow in a horizontal channel with cavity: Impact on heat transfer and hydrodynamic forces,” Case Stud. Therm. Eng., vol. 27, pp. 101321, 2021.
  • P. Rana, A. Kumar and G. Gupta, “Impact of different arrangements of heated elliptical body, fins and differential heater in MHD convective transport phenomena of inclined cavity utilizing hybrid nanoliquid: artificial neutral network prediction,” Int. Commun. Heat Mass Trans., vol. 132, pp. 105900, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105900.
  • Z. Korei, S. Benissaad, F. Berrahil and A. Filali, “MHD mixed convection and irreversibility analysis of hybrid nanofluids in a partially heated lid-driven cavity chamfered from the bottom side,” Int. Commun. Heat Mass Trans., vol. 132, pp. 105895, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105895.
  • P. A. Tyvand and L. Storsletten, “Onset of convection in an anisotropic porous medium with oblique principal axes,” J. Fluid Mech., vol. 226, pp. 371–382, 1991. DOI: 10.1017/S0022112091002422.
  • L. Storesletten, “Natural convection in a horizontal porous layer with anisotropic thermal diffusivity,” Transp. Porous Med., vol. 12, no. 1, pp. 19–29, 1993. DOI: 10.1007/BF00616359.
  • J. P. Holman, Heat Transfer, New Delhi, India: Mc Graw Hill, 2010,
  • C. Demirkir and H. Erturk, “Convective heat transfer and pressure drop characteristics of graphene-water nanofluids in transitional flow,” Int. Comm. Heat Mass. Trans., vol. 121, pp. 105092, 2021.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New Delhi, India: Hemi Publisher Corporation, 1980.
  • P. Bera, S. Pippal and A. K. Sharma, “A thermal non-equilibrium approach on double-diffusive natural convection in a square porous-medium cavity,” Int. J. Heat Mass Trans., vol. 78, pp. 1080–1094, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.041.
  • T. Basak, S. Roy, T. Paul and I. Pop, “Natural convection in a square cavity filled with a porous medium: Effects of various thermal boundary conditions,” Int. J. Heat Mass Trans., vol. 49, no. 7-8, pp. 1430–1441, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.09.018.
  • B. Calcagni, F. Marsili and M. Paroncini, “Natural convective heat transfer in square enclosures heated from below,” Appl. Therm. Eng., vol. 25, no. 16, pp. 2522–2531, 2005. DOI: 10.1016/j.applthermaleng.2004.11.032.
  • M. S. Phanikumar and R. L. Mahajan, “Non-Darcy natural convection in high porosity metal foams,” Int. J. Heat Mass Trans., vol. 45, no. 18, pp. 3781–3793, 2002. DOI: 10.1016/S0017-9310(02)00089-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.