Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 1
191
Views
1
CrossRef citations to date
0
Altmetric
Articles

Transient multiphysics coupled model for multiscale droplet condensation out of moist air

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 16-34 | Received 08 Apr 2022, Accepted 18 Jul 2022, Published online: 27 Jul 2022

References

  • S.-F. Zheng, U. Gross, and X.-D. Wang, “Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces,” Adv. Colloid Interface Sci., vol. 295, pp. 102503, 2021.
  • N. S. Singh, J. Zhang, J. Stafford, C. Anthony, and N. Gao, “Implementing superhydrophobic surfaces within various condensation environments: A review,” Adv. Mater. Interfaces, vol. 8, no. 2, pp. 2001442, 2021. DOI: 10.1002/admi.202001442.
  • T.-Y. Zhang, L.-W. Mou, M.-J. Liu, and L.-W. Fan, “Advances in modeling investigations of multimode dropwise condensation heat transfer on smooth and textured surfaces-A review,” Int. J. Thermal Sci., vol. 172, pp. 107309, 2022. DOI: 10.1016/j.ijthermalsci.2021.107309.
  • Z.-J. Wang, et al., “Water vapor condensation on binary mixed substrates: A molecular dynamics study,” Int. J. Heat Mass Transfer, vol. 184, pp. 122281, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122281.
  • J. B. Boreyko and C.-H. Chen, “Self-propelled dropwise condensate on superhydrophobic surfaces,” Phys. Rev. Lett., vol. 103, no. 18, pp. 184501, 2009.
  • N. Miljkovic, et al., “Jumping-droplet- enhanced condensation on scalable superhydrophobic nanostructured surfaces,” Nano Lett., vol. 13, no. 1, pp. 179–187, 2013. DOI: 10.1021/nl303835d.
  • X. Ma, X. Zhou, Z. Lan, Y. Li, and Y. Zhang, “Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation,” Int. J. Heat Mass Transfer, vol. 51, no. 7-8, pp. 1728–1737, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.07.021.
  • Y. Zhao, et al., “Effects of millimetric geometric features on dropwise condensation under different vapor conditions,” Int. J. Heat Mass Transfer, vol. 119, pp. 931–938, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.139.
  • J. Huang, J. X. Zhang, and L. Wang, “Review of vapor condensation heat and mass transfer in the presence of non-condensable gas,” Appl. Therm. Eng., vol. 89, pp. 469–484, 2015. DOI: 10.1016/j.applthermaleng.2015.06.040.
  • S.-F. Zheng, F. Eimann, C. Philipp, T. Fieback, and U. Gross, “Experimental and modeling investigations of dropwise condensation out of convective humid air flow,” Int. J. Heat Mass Transfer, vol. 151, pp. 119349, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119349.
  • B. E. Fil, G. Kini, and S. Garimella, “A review of dropwise condensation: Theory, modeling, experiments, and application,” Int. J. Heat Mass Transfer, vol. 160, pp. 120172, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120172.
  • S.-F. Zheng, F. Eimann, C. Philipp, T. Fieback, and U. Gross, “Modeling of heat and mass transfer for dropwise condensation of moist air and the experimental validation,” Int. J. Heat Mass Transfer, vol. 120, pp. 879–894, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.059.
  • V. Baghel, B. S. Sikarwar, and K. Muralidhar, “Dropwise condensation from moist air over a hydrophobic metallic substrate,” Appl. Therm. Eng., vol. 181, pp. 115733, 2020. DOI: 10.1016/j.applthermaleng.2020.115733.
  • E. D. Wikramanayake and V. Bahadur, “Electrowetting-based enhancement of droplet growth dynamics and heat transfer during humid air condensation,” Int. J. Heat Mass Transfer, vol. 140, pp. 260–268, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.112.
  • W. Liu and X. Ling, “Heat transfer model based on diffusion layer theory for dropwise condensation with high non-condensable gas,” AIP Adv., vol. 10, no. 12, pp. 125305, 2020. DOI: 10.1063/5.0023552.
  • J. Jiang, F. Liu, X. Zhang, and H. Wei, “Model development and simulation on dropwise condensation by coupling absorption theory in the presence of non-condensable gas (NCG),” Int. Commun. Heat Mass Transfer, vol. 119, pp. 104936, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104936.
  • S.-F. Zheng, et al., “The condensation characteristics of individual droplets during dropwise condensation,” Int. Commun. Heat Mass Transfer, vol. 131, pp. 105836, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105836.
  • M.-G. Medici, A. Mongruel, L. Royon and D. Beysens, “Edge effects on water droplet condensation,” Phys. Rev. E., vol. 90, no. 6, pp. 062403, 2014. DOI: 10.1103/PhysRevE.90.062403.
  • R. N. Leach, F. Stevens, S. C. Langford and J. T. Dickinson, “Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system,” Langmuir, vol. 22, no. 21, pp. 8864–8872, 2006. DOI: 10.1021/la061901+.
  • T. K. Pradhan and P. K. Panigraphi, “Vapor mediated interaction of two condensing droplets,” Colloids Surfaces A: Physicochem. Engin. Aspects, vol. 608, pp. 125555, 2021. DOI: 10.1016/j.colsurfa.2020.125555.
  • L. Y. Shen, G. H. Tang, Q. Li and Y. Shi, “Hybrid wettability-induced heat transfer enhancement for condensation with noncondensable gas,” Langmuir, vol. 35, no. 29, pp. 9430–9440, 2019. DOI: 10.1021/acs.langmuir.9b01385.
  • S.-F. Zheng, F. Eimann, C. Philipp, T. Fieback and U. Gross, “Single droplet condensation in presence of non-condensable gas by a multi-component multi-phase thermal lattice Boltzmann model,” Int. J. Heat Mass Transfer, vol. 139, pp. 254–268, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.135.
  • R. Wen, et al., “Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas,” Int. J. Heat Mass Transfer, vol. 140, pp. 173–186, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.110.
  • Z. Xu, L. Zhang, K. Wilke and E. N. Wang, “Multiscale dynamic growth and energy transport of droplets during condensation,” Langmuir, vol. 34, no. 30, pp. 9085–9095, 2018. DOI: 10.1021/acs.langmuir.8b01450.
  • A. Phadnis and K. Rykaczewski, “The effect of Marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces,” Int. J. Heat Mass Transfer, vol. 115, pp. 148–158, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.026.
  • A. Al-Sharafi, A. Z. Sahin, B. S. Yilbas and S. Z. Shuja, “Marangoni convection flow and heat transfer characteristics of water-CNT nanofluid droplets,” Numer. Heat Transfer, Part A: Appl., vol. 69, no. 7, pp. 763–780, 2016. DOI: 10.1080/10407782.2015.1090809.
  • Y. H. Chen, W. N. Hu, J. Wang, F. J. Hong and P. Cheng, “Transient effects and mass convection in sessile droplet evaporation: The role of liquid and substrate thermophysical properties,” Int. J. Heat Mass Transfer, vol. 108, pp. 2072–2087, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.050.
  • Y. Akkus, B. Cetin and Z. Dursunkaya, “A theoretical framework for comprehensive modeling of steadily fed evaporating droplets and the validity of common assumptions,” Int. J. Thermal Sci., vol. 158, pp. 106529, 2020. DOI: 10.1016/j.ijthermalsci.2020.106529.
  • M. Z. Jacobson, Fundamentals of Atmospheric Modeling, 2nd ed., New York: Cambridge University Press, 2005.
  • O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteor., vol. 35, no. 4, pp. 601–609, 1996. DOI: 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2.
  • COMSOL Inc., “COMSOL 5.6 Reference Manual,” 2020.
  • M. Li, J. Wei, and W. Tao, “Numerical simulation of dropwise condensation on rough structures in the presence of non-condensable gas using LBM,” Numer. Heat Transfer, Part A: Appl., vol. 79, no. 6, pp. 450–462, 2021. DOI: 10.1080/10407782.2020.1848311.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.