Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 1
291
Views
1
CrossRef citations to date
0
Altmetric
Articles

Optimization and thermodynamic analysis of rib arrangement and height for microchannels with sharkskin bionic ribs

, , , &
Pages 54-70 | Received 03 Apr 2022, Accepted 18 Jul 2022, Published online: 28 Jul 2022

References

  • H. Dinis and P. M. Mendes, “A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices,” Biosens. Bioelectron., vol. 172, pp. 112781, 2020. DOI: 10.1016/j.bios.2020.112781.
  • Z. Yao, Y. W. Lu and S. G. Kandlikar, “Fabrication of nanowires on orthogonal surfaces of microchannels and their effect on pool boiling,” J. Micromech. Microeng., vol. 22, no. 11, pp. 115005–762, 2012. DOI: 10.1088/0960-1317/22/11/115005.
  • K. Yamada, et al., “Fabrication of arrays of tapered silicon micro-/nano-pillars by metal-assisted chemical etching and anisotropic wet etching,” Nanotechnology, vol. 29, no. 28, pp. 28LT01, 2018. DOI: 10.1088/1361-6528/aac04b.
  • D. Deng, L. Zeng, and W. Sun, “A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks,” Int. J. Heat Mass Transf, vol. 175, pp. 121332, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121332.
  • Z. He, Y. Yan, and Z. Zhang, “Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review,” Energy, vol. 216, pp. 119223, 2021. DOI: 10.1016/j.energy.2020.119223.
  • T. Chen, C. Qi, J. Tang, G. Wang, and Y. Yan, “Numerical and experimental study on optimization of CPU system cooled by nanofluids,” Case Stud. Therm. Eng., vol. 24, pp. 100848, 2021. DOI: 10.1016/j.csite.2021.100848.
  • M. E. M. Soudagar, et al., “Thermal analyses of minichannels and use of mathematical and numerical models,” Numer. Heat Transf. Part A. Appl., vol. 77, no. 5, pp. 497–537, 2020. DOI: 10.1080/10407782.2019.1701883.
  • D. B. Tuckerman and R. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • N. A. C. Sidik, M. N. A. W. Muhamad, W. M. A. A. Japar and Z. A. Rasid, “An overview of passive techniques for heat transfer augmentation in microchannel heat sink,” Int. Commun. Heat Mass, vol. 88, pp. 74–83, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.08.009.
  • S. R. Hosseini, M. Sheikholeslami, M. Ghasemian and D. D. Ganji, “Nanofluid heat transfer analysis in a microchannel heat sink (MCHS) under the effect of magnetic field by means of KKL model,” Powder Technol., vol. 324, pp. 36–47, 2018. DOI: 10.1016/j.powtec.2017.10.043.
  • S. S. Panse and S. V. Ekkad, “A numerical parametric study to enhance thermal hydraulic performance of a novel alternating offset oblique microchannel,” Numer. Heat Transf. Part A. Appl., vol. 79, no. 7, pp. 1–24, 2021. DOI: 10.1080/10407782.2021.1872259.
  • A. Borah, S. Pati and B. László, “Conjugate heat transfer analysis for forced convective flow through a parallel plate microchannel: Effect of nonuniform asymmetric heating,” Numer. Heat Transf. Part A. Appl., vol. 88, pp. 210–233, 2021. DOI: 10.1080/10407782.2021.1939633.
  • H. Sun, et al., “Thermal and flow characterization in nanochannels with tunable surface wettability: A comprehensive molecular dynamics study,” Numer. Heat Transf. Part A. Appl., vol. 78, pp. 231–251, 2020. DOI: 10.1080/10407782.2020.1788849.
  • El. Kadi, F. Alnaimat, S. Sherif, “Recent advances in condensation heat transfer in mini and micro channels: A comprehensive review,” Appl. Therm. Eng., vol. 197, pp. 117412, 2021. DOI: 10.1016/j.applthermaleng.2021.117412
  • M. Polat, F. Ulger and S. Cadirci, “Multi-objective optimization and performance assessment of microchannel heat sinks with micro pin-fins,” Int. J. Therm. Sci., vol. 174, pp. 107432, 2022. DOI: 10.1016/j.ijthermalsci.2021.107432.
  • J. C. Cheng, Y. L. Tsay, C. T. Liu and S. Cheng, “Heat transfer enhancement of microchannel heat sink with longitudinal vortex generators and bypass jet flow,” Numer. Heat Transf. Part A. Appl., vol. 77, no. 8, pp. 1–13, 2020. DOI: 10.1080/10407782.2020.1720413.
  • B. Qza, A. Rs, A. Hx, A. Jz and A. Jc, “Numerical simulation study of thermal and hydraulic characteristics of laminar flow in microchannel heat sink with water droplet cavities and different rib columns,” Int. J. Therm. Sci., vol. 172, pp. 10719, 2022. DOI: 10.1016/j.ijthermalsci.2021.107319.
  • M. Arun, D. Dilip and S. Ranjith, “Effect of interface curvature on isothermal heat transfer in a hydrophobic microchannel with transverse ribs and cavities,” Int. J. Therm. Sci., vol. 167, pp. 107014, 2021. DOI: 10.1016/j.ijthermalsci.2021.107014.
  • S.-L. Wang, et al., “Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design,” Int. J. Therm. Sci., vol. 171, pp. 107229, 2022. DOI: 10.1016/j.ijthermalsci.2021.107229.
  • A. Goh and K. Ooi, “Nature-inspired Inverted Fish Scale microscale passages for enhanced heat transfer,” Int. J. Therm. Sci., vol. 106, pp. 18–31, 2016. DOI: 10.1016/j.ijthermalsci.2016.03.010.
  • V. Yadav, K. Baghel, R. Kumar, and S. T. Kadam, “Numerical investigation of heat transfer in extended surface microchannels,” Int. J. Heat Mass Transf, vol. 93, pp. 612–622, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.023.
  • Z. Wang, B. G. Li, Q. Q. Luo, and W. Zhao, “Effect of wall roughness by the bionic structure of dragonfly wing on microfluid flow and heat transfer characteristics,” Int. J. Heat Mass Transf, vol. 173, pp. 121201, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121201.
  • Y. Luo, W. Liu, W. Li, and W. Xie, “Heat and mass transfer characteristics of leaf-vein-in-spired microchannels with wall thickening patterns,” Int. J. Heat Mass Transf, vol. 101, pp. 1273–1282, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.120.
  • J. Tang, C. Qi, Z. Ding, M. Afrand, and Y. Yan, “Thermo-hydraulic performance of nanofluids in a bionic heat sink,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105492, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105492.
  • P. Li, D. Guo, and X. Huang, “Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink,” Int. J. Heat Mass Transf., vol. 146, pp. 118846, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118846.
  • Y. F. Fu, C. Q. Yuan, and X. Q. Bai, “Marine drag reduction of shark skin inspired riblet surfaces,” Biosurface Biotribology, vol. 3, no. 1, pp. 11–24, 2017. DOI: 10.1016/j.bsbt.2017.02.001.
  • B. Jwa, et al., “Modulated vibration texturing of hierarchical microchannels with controllable profiles and orientations,” CIRP J. Manuf. Sci. Technol., vol. 30, pp. 58–67, 2020. DOI: 10.1016/j.cirpj.2020.04.002.
  • G. D. Xia, Y. L. Zhai, and Z. Z. Cui, “Numerical investigation of thermal enhancement in a micro heat sink with fan-shaped reentrant cavities and internal ribs,” Appl. Therm. Eng., vol. 58, no. 1–2, pp. 52–60, 2013. DOI: 10.1016/j.applthermaleng.2013.04.005.
  • Y. F. Li, G. D. Xia, D. D. Ma, Y. T. Jia, and J. Wang, “Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs,” Int. J.Heat Mass Tran., vol. 98, pp. 17–28, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.022.
  • A. Shahsavar, M. Saghafian, M. R. Salimpour, and M. B. Shafii, “Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields,” Exp. Therm. Fluid Sci., vol. 76, pp. 1–11, 2016. DOI: 10.1016/j.expthermflusci.2016.03.010.
  • R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts. Academic Press: New York, NY, 1978.
  • J. F. Fan, W. K. Ding, J. F. Zhang, Y. L. He, and W. Q. Tao, “A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving,” Int. J. Heat Mass Transfer, vol. 52, no. 1–2, pp. 33–44, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.07.006.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transf., vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.