Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 2
256
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Experimental and numerical study of heat transfer and friction factor characteristics of an inclined elliptical dimple channel having inline and staggered pattern

, &
Pages 141-155 | Received 17 Apr 2022, Accepted 18 Jul 2022, Published online: 03 Aug 2022

References

  • J. C. Han, S. Dutta, and S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology. New York: Taylor and Francis, 2013.
  • V. N. Afanasyev, Y. P. Chudnovsky, A. I. Leontiev, and P. S. Roganov, “Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate,” Exp. Therm. Fluid Sci., vol. 7, no. 1, pp. 1–8, 1993. DOI: 10.1016/0894-1777(93)90075-T.
  • M. K. Chyu, Y. Yu, H. Ding, J. P. Downs, and F. O. Soechting, 1997. “Concavity enhanced heat transfer in an internal cooling passage,” ASME, International Gas Turbine and Aeroengine Congress and Exhibition, International Gas Turbine Institute, June 2–5, 1997. Orlando, Florida, USA, pp. 97-GT-437, V003T09A080; 7 pages. DOI: DOI: 10.1115/97-GT-437.
  • Y. L. Lin, T. Shih, and M. K. Chyu, “Computations of flow and heat transfer in a channel with rows of hemispherical cavities,” in ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, June. American Society of Mechanical Engineers Digital Collection, 1999. DOI: 10.1115/99-GT-263.
  • H. K. Moon, T. O’connell, and B. Glezer, “Channel height effect on heat transfer and friction in a dimpled passage,” J. Eng. Gas Turbines Power, vol. 122, no. 2, pp. 307–313, 2000. DOI: 10.1115/1.483208.
  • P. M. Ligrani, J. L. Harrison, G. I. Mahmmod, and M. L. Hill, “Flow structure due to dimple depressions on a channel surface,” Phys. Fluids, vol. 13, no. 11, pp. 3442–3451, 2001. DOI: 10.1063/1.1404139.
  • G. I. Mahmood, M. Z. Sabbagh, and P. M. Ligrani, “Heat transfer in a channel with dimples and protrusions on opposite walls,” J. Thermophys. Heat Transf., vol. 15, no. 3, pp. 275–283, 2001. DOI: 10.2514/2.6623.
  • R. S. Bunker and K. F. Donnellan, “Heat transfer and friction factors for flows inside circular tubes with concavity surfaces,” J. Turbomach., vol. 125, no. 4, pp. 665–672, 2003. DOI: 10.1115/1.1622713.
  • W. V. Patrick and D. K. Tafti, “Computations of flow structure and heat transfer in a dimpled channel at low to moderate Reynolds number,” in ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. January. American Society of Mechanical Engineers Digital Collection, 2004, pp. 401–412. DOI: 10.1115/HT-FED2004-56171.
  • M. A. Elyyan and D. K. Tafti, “Large eddy simulation investigation of flow and heat transfer in a channel with dimples and protrusions,” J. Turbomach., vol. 130, no. 4, p. 041016, 2008. DOI: 10.1115/1.2812412.
  • E. B. Coy and S. A. Danczyz, “Measurements of the effectiveness of concave spherical dimples for enhancement heat transfer,” J. Propuls. Power, vol. 27, no. 5, pp. 955–958, 2011. DOI: 10.2514/1.B34255.
  • Y. Rao, C. Wan, and Y. Xu, “An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths,” Int. J. Heat Mass Transf., vol. 55, no. 23–24, pp. 6723–6733, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.06.081.
  • C. Neil Jordan and L. M. Wright, “Heat transfer enhancement in a rectangular (AR= 3:1) channel with V-shaped dimples,” J. Turbomach., vol. 135, no. 1, pp. 011028-1–011028-10, 2013. DOI: 10.1115/1.4006422.
  • N. Katkhaw, N. Vorayos, T. Kiatsiriroat, Y. Khunatorn, D. Bunturat, and A. Nuntaphan, “Heat transfer behavior of flat plate having 45 ellipsoidal dimpled surfaces,” Case Stud. Therm. Eng., vol. 2, pp. 67–74, 2014. DOI: 10.1016/j.csite.2013.12.002.
  • Y. Rao, B. Li, and Y. Feng, “Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples,” Exp. Therm. Fluid Sci., vol. 61, pp. 201–209, 2015. DOI: 10.1016/j.expthermflusci.2014.10.030.
  • N. Vorayos, N. Katkhaw, T. Kiatsiriroat, and A. Nuntaphan, “Heat transfer behavior of flat plate having spherical dimpled surfaces,” Case Stud. Therm. Eng., vol. 8, pp. 370–377, 2016. DOI: 10.1016/j.csite.2016.09.004.
  • S. Xie, Z. Liang, J. Zhang, L. Zhang, Y. Wang, and H. Ding, “Numerical investigation on flow and heat transfer in dimpled tube with teardrop dimples,” Int. J. Heat Mass Transf., vol. 131, pp. 713–723, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.112.
  • A. Perwez and R. Kumar, “Thermal performance investigation of the flat and the spherical dimple absorber plate solar air heaters,” Sol Energy, vol. 193, pp. 309–323, 2019. DOI: 10.1016/j.solener.2019.09.066.
  • A. Perwez and R. Kumar, “Heat transfer performance investigation of the spherical dimple heat sink and inclined teardrop dimple heat sink,” Numer. Heat Transf., A: Appl., vol. 76, no. 2, pp. 73–86, 2019. DOI: 10.1080/10407782.2019.1612676.
  • A. Perwez, S. Shende, and R. Kumar, “Heat Transfer and friction factor characteristic of spherical and inclined teardrop dimple channel subjected to forced convection,” Exp. Heat Transf., vol. 32, no. 2, pp. 159–178, 2018. DOI: 10.1080/08916152.2018.1485786.
  • A. Perwez, S. Shende, and R. Kumar, “Forced convection based heat transfer analysis of spherical dimple and protrusion surface in turbulent flow,” Trans. Canadian Soc. Mech. Eng., vol. 41, no. 5, pp. 771–786, 2017. DOI: 10.1139/tcsme-2017-511.
  • S. Panda and R. Kumar, “A review on effect of various artificial roughness on heat transfer enhancement in a channel flow,” J. Therm. Eng., vol. 7, no. 5, pp. 1267–1301, 2021. DOI: 10.18186/thermal.978149.
  • T. Sachdev, V. K. Gaba, and A. K. Tiwari, “Comparative thermal analysis of applications using novel solar air heater with u-shaped longitudinal fins: Suitable for coastal regions,” J. Therm. Eng., vol. 7, no. 5, pp. 1174–1183, 2021.
  • D. Park, C. A. Silva, E. Marotta, and L. Fletcher, “Study of laminar forced convection heat transfer for dimpled heat sinks,” J. Thermophys. Heat Transf., vol. 22, no. 2, pp. 262–270, 2008. DOI: 10.2514/1.33497.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single sample experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • O. B. Carnage, S. P. Lee, and C. Yap, “A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink,” Int. J. Heat Mass Transf., vol. 106, pp. 449–464, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.08.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.