Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 2
140
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Performance enhancement of photovoltaic panel by using microencapsulated phase change slurry in channel with staggered pins

ORCID Icon, , ORCID Icon, &
Pages 156-175 | Received 22 Apr 2022, Accepted 18 Jul 2022, Published online: 03 Aug 2022

References

  • K. E. Kasza and M. M. Chen, “Improvement of the performance of solar energy or waste heat utilization systems by using phase-change slurry as an enhanced heat-transfer storage fluid,” J. Sol. Energy Eng., vol. 107, no. 3, pp. 229–236, 1985. DOI: 10.1115/1.3267683.
  • B. Chen, X. Wang, Y. Zhang, H. Xu, and R. Yang, “Experimental research on laminar flow performance of phase change emulsion,” Appl. Therm. Eng., vol. 26, no. 1112, pp. 1238–1245, 2006. DOI: 10.1016/j.applthermaleng.2005.10.040.
  • P. Charunyakorn, S. Sengupta, and S. K. Roy, “Forced convection heat transfer in microencapsulated phase change material slurries: Flow in circular ducts,” Int. J. Heat Mass Transf., vol. 34, no. 3, pp. 819–833, 1991. DOI: 10.1016/0017-9310(91)90128-2.
  • J. L. Alvarado, C. Marsh, C. Sohn, G. Phetteplace, and T. Newell, “Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux,” Int. J. Heat Mass Transf., vol. 50, no. 910, pp. 1938–1952, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.026.
  • M. Goel, S. K. Roy, and S. Sengupta, “Laminar forced convection heat transfer in microcapsulated phase change material suspensions,” Int. J. Heat Mass Transf., vol. 37, no. 4, pp. 593–604, 1994. DOI: 10.1016/0017-9310(94)90131-7.
  • Y. Zhang and A. Faghri, “Analysis of forced convection heat transfer in microencapsulated phase change material suspensions,” J. Thermophys. Heat Transf., vol. 9, no. 4, pp. 727–732, 1995. DOI: 10.2514/3.731.
  • E. L. Alisetti and S. K. Roy, “Forced convection heat transfer to phase change material slurries in circular ducts,” J. Thermophys. Heat Transf., vol. 14, no. 1, pp. 115–118, 2000. DOI: 10.2514/2.6499.
  • X. Hu and Y. Zhang, “Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: Laminar flow in a circular tube with constant heat flux,” Int. J. Heat Mass Transf., vol. 45, no. 15, pp. 3163–3172, 2002. DOI: 10.1016/S0017-9310(02)00034-0.
  • C. J. Ho, J. F. Lin, and S. Y. Chiu, “Heat transfer of solid–liquid phase-change material suspensions in circular pipes: Effects of wall conduction,” Numer. Heat Transf. A, vol. 45, no. 2, pp. 171–190, 2004. DOI: 10.1080/10407780390244399.
  • C. Eunsoo, Y. I. Cho, and H. G. Lorsch, “Forced convection heat transfer with phase-change-material slurries: Turbulent flow in a circular tube,” Int. J. Heat Mass Transf., vol. 37, no. 2, pp. 207–215, 1994. DOI: 10.1016/0017-9310(94)90093-0.
  • Y. Yamagishi, H. Takeuchi, A. T. Pyatenko, and N. Kayukawa, “Characteristics of microencapsulated PCM slurry as a heat‐transfer fluid,” AIChE J., vol. 45, no. 4, pp. 696–707, 1999. DOI: 10.1002/aic.690450405.
  • Y. Wang, Z. Chen, and X. Ling, “An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels,” Appl. Therm. Eng., vol. 105, pp. 209–216, 2016. DOI: 10.1016/j.applthermaleng.2016.05.159.
  • H. Inaba, M. J. Kim, and A. Horibe, “Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microcapsules having different diameters,” J. Heat Transf., vol. 126, no. 4, pp. 558–565, 2004. DOI: 10.1115/1.1773584.
  • M. Kong, J. L. Alvarado, C. Thies, S. Morefield, and C. P. Marsh, “Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems,” Energy, vol. 122, pp. 691–700, 2017. DOI: 10.1016/j.energy.2016.12.092.
  • L. Li et al., “Preparation and flow resistance characteristics of novel microcapsule slurries for engine cooling system,” Energy Convers. Manag., vol. 135, pp. 170–177, 2017. DOI: 10.1016/j.enconman.2016.12.043.
  • L. Liu, Y. Jia, Y. Lin, G. Alva, and G. Fang, “Performance evaluation of a novel solar photovoltaic–thermal collector with dual channel using microencapsulated phase change slurry as cooling fluid,” Energy Convers. Manag., vol. 145, pp. 30–40, 2017. DOI: 10.1016/j.enconman.2017.04.089.
  • Y. Jia, C. Zhu, and G. Fang, “Performance optimization of a photovoltaic/thermal collector using microencapsulated phase change slurry,” Int. J. Energy Res., vol. 44, no. 3, pp. 1812–1827, 2020. DOI: 10.1002/er.5028.
  • Z. Qiu, X. Ma, X. Zhao, P. Li, and S. Ali, “Experimental investigation of the energy performance of a novel micro-encapsulated phase change material (MPCM) slurry based PV/T system,” Appl. Energy, vol. 165, pp. 260–271, 2016. DOI: 10.1016/j.apenergy.2015.11.053.
  • M. S. Abd-Elhady, Z. Serag, and H. A. Kandil, “An innovative solution to the overheating problem of PV panels,” Energy Convers. Manag., vol. 157, pp. 452–459, 2018. DOI: 10.1016/j.enconman.2017.12.017.
  • T. T. Chow, J. W. Hand, and P. A. Strachan, “Building-integrated photovoltaic and thermal applications in a subtropical hotel building,” Appl. Therm. Eng., vol. 23, no. 16, pp. 2035–2049, 2003. DOI: 10.1016/S1359-4311(03)00183-2.
  • H. Salem, E. Mina, R. Abdelmessih, and T. Mekhail, “Numerical investigation for performance enhancement of photovoltaic cell by nanofluid cooling,” J. Sol. Energy Eng., vol. 144, no. 2, pp. 1–32, 2022. DOI: 10.1115/1.4053459.
  • G. Ravi, J. L. Alvarado, C. Marsh, and D. A. Kessler, “Laminar flow forced convection heat transfer behavior of a phase change material fluid in finned tubes,” Numer. Heat Transf. A: Appl., vol. 55, no. 8, pp. 721–738, 2009. DOI: 10.1080/10407780902864672.
  • S. Kondle, J. L. Alvarado, and C. Marsh, “Laminar flow forced convection heat transfer behavior of a phase change material fluid in microchannels,” J. Heat Transf., vol. 135, no. 5, 2013. DOI: 10.1115/1.4023221.
  • E. M. Mina, G. Ghorbaniasl, and C. Lacor, “Study of nanoparticles deposition in a human upper airway model using a dynamic turbulent Schmidt number,” Ain Shams Eng. J., vol. 9, no. 4, pp. 2389–2398, 2018. DOI: 10.1016/j.asej.2017.05.002.
  • S. Kondle, J. L. Alvarado, and C. Marsh, “Laminar heat transfer behavior of a phase change material fluid in microchannels with staggered pins,” J. Heat Transf., vol. 139, no. 6, 2017. DOI: 10.1115/1.4035441.
  • B. Chen et al., “An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux,” Exp. Therm. Fluid Sci., vol. 32, no. 8, pp. 1638–1646, 2008. DOI: 10.1016/j.expthermflusci.2008.05.008.
  • E. Yamada and K. Takahashi, “Effective thermal conductivity of suspensions-1st report,” Heat Transf.: Japanese Res., vol. 4, pp. 83–101, 1975.
  • V. Vand, “Theory of viscosity of concentrated suspensions,” Nature, vol. 155, no. 3934, pp. 364–365, 1945. DOI: 10.1038/155364b0.
  • X. Wang et al., “Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube,” Int. J. Heat Mass Transf., vol. 50, no. 1314, pp. 2480–2491, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.12.024.
  • F. Dammel and P. Stephan, “Heat transfer to suspensions of microencapsulated phase change material flowing through minichannels,” J. Heat Transf., vol. 134, no. 2, 2012. DOI: 10.1115/1.4005062.
  • J. Alvarado et al., “Characterization of supercooling suppression of microencapsulated phase change material by using DSC,” J. Therm. Anal. Calorim., vol. 86, no. 2, pp. 505–509, 2006. DOI: 10.1007/s10973-005-7430-0.
  • M. McHale, J. Friedman, and J. Karian, “Standard for verification and validation in computational fluid dynamics and heat transfer,” Amer. Soc. Mech. Eng., 2009, VV20 (2009-R2021), ISBN: 9780791832097.
  • V. Ayel, O. Lottin, and H. Peerhossaini, “Rheology, flow behaviour and heat transfer of ice slurries: A review of the state of the art,” Int. J. Refrig., vol. 26, no. 1, pp. 95–107, 2003. DOI: 10.1016/S0140-7007(02)00016-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.