Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 3
291
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Thermal–hydraulic characteristics and structure optimization of Z-channel printed circuit heat exchanger

, , , &
Pages 177-197 | Received 21 Apr 2022, Accepted 18 Jul 2022, Published online: 09 Aug 2022

References

  • Z. Zhang and S. Yu, “Future HTGR developments in China after the criticality of the HTR-10,” Nucl. Eng. Des., vol. 218, no. 13, pp. 249–257, 2002. DOI: 10.1016/S0029-5493(02)00204-2.
  • R. Zhu, J. Wang, Q. Zheng, and Y. Ming, “Off-design performance research of an axial helium compressor for HTGR-10 power conversion unit,” Nucl. Eng. Des., vol. 240, no. 10, pp. 2914–2919, 2010. DOI: 10.1016/j.nucengdes.2010.06.032.
  • J. Nestell and T. L. Sham, “ASME Code Considerations for the Compact Heat Exchanger,” Oak Ridge, TN, USA: Oak Ridge National Laboratory, ORNL/TM-2015/401, 2015. DOI: 10.2172/1214514.
  • J. Iwatsuki et al., “1 - Overview of high temperature gas-cooled reactor,” in High Temperature Gas-Cooled Reactors, vol. 5, T. Takeda and Y. Inagaki, Eds. Academic Press, 2021, pp. 1–16. DOI: 10.1016/B978-0-12-821031-4.00001-4.
  • J. Aihara et al., “5 - R&D on commercial high temperature gas-cooled reactor,” in High Temperature Gas-Cooled Reactors, vol. 5, T. Takeda and Y. Inagaki, Eds. Academic Press, 2021, pp. 313–450. DOI: 10.1016/B978-0-12-821031-4.00005-1.
  • H. Groehn, “Thermal-hydraulics of helical-type helium/helium intermediate heat exchangers (IHX) for nuclear process heat applications of high-temperature gas-cooled reactors (HTR)—fundamental research and large-scale tests,” Nucl. Eng. Des., vol. 126, no. 2, pp. 285–290, 1991. DOI: 10.1016/0029-5493(91)90118-2.
  • D. Tochio and S. Nakagawa, “Thermal performance of intermediate heat exchanger during high-temperature continuous operation in HTTR,” J. Nucl. Sci. Technol., vol. 48, no. 11, pp. 1361–1368, 2011. DOI: 10.1080/18811248.2011.9711828.
  • B. Wealer, S. Bauer, C. Hirschhausen, C. Kemfert, and L. Göke, “Investing into third generation nuclear power plants-Review of recent trends and analysis of future investments using Monte Carlo Simulation,” Renew. Sustain. Energy Rev., vol. 143, pp. 110836, 2021. DOI: 10.1016/j.rser.2021.110836.
  • J. A. Lake, “The fourth generation of nuclear power,” Prog. Nucl. Energy, vol. 40, no. 34, pp. 301–307, 2002. DOI: 10.1016/S0149-1970(02)00023-9.
  • I. H. Kim and H. C. No, “Physical model development and optimal design of PCHE for intermediate heat exchangers in HTGRs,” Nucl. Eng. Des., vol. 243, pp. 243–250, 2012. DOI: 10.1016/j.nucengdes.2011.11.020.
  • N. Tsuzuki, Y. Kato, and T. Ishiduka, “High performance printed circuit heat exchanger,” Appl. Therm. Eng., vol. 27, no. 10, pp. 1702–1707, 2007. DOI: 10.1016/j.applthermaleng.2006.07.007.
  • K. Nikitin, Y. Kato, and L. Ngo, “Printed circuit heat exchanger thermal–hydraulic performance in supercritical CO2 experimental loop,” Int. J. Refrig., vol. 29, no. 5, pp. 807–814, 2006. DOI: 10.1016/j.ijrefrig.2005.11.005.
  • T. Ishizuka, Y. Kato, Y. Muto, K. Nikitin, and N. Lam, “Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO2 loop,” Bull. Res. Lab. Nucl. React., vol. 30, pp. 109–116, 2006.
  • Z.-X. Wen, Y.-G. Lv, and Q. Li, “Comparative study on flow and heat transfer characteristics of sinusoidal and zigzag channel printed circuit heat exchangers,” Sci. China Technol. Sci., vol. 63, no. 4, pp. 655–667, 2020. DOI: 10.1007/s11431-019-1492-2.
  • X. Y. Xu, Q. W. Wang, L. Li, S. V. Ekkad, and T. Ma, “Thermal-hydraulic performance of different discontinuous fins used in a printed circuit heat exchanger for supercritical CO2,” Numer. Heat Transf. A: Appl., vol. 68, no. 10, pp. 1067–1086, 2015. DOI: 10.1080/10407782.2015.1032028.
  • A. Kruizenga et al., “Heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries,” presented at the 2010 14th International Heat Transfer Conference, vol. 4, pp. 653–661, 2010. DOI: 10.1115/ihtc14-22880.
  • T. L. Ngo, Y. Kato, K. Nikitin, and T. Ishizuka, “Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles,” Exp. Therm. Fluid Sci., vol. 32, no. 2, pp. 560–570, 2007. DOI: 10.1016/j.expthermflusci.2007.06.006.
  • T. L. Ngo, Y. Kato, K. Nikitin, and N. Tsuzuki, “New printed circuit heat exchanger with S-shaped fins for hot water supplier,” Exp. Therm. Fluid Sci., vol. 30, no. 8, pp. 811–819, 2006. DOI: 10.1016/j.expthermflusci.2006.03.010.
  • H. A. Mohammed, P. Gunnasegaran, and N. H. Shuaib, “Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink,” Int. Commun. Heat Mass Transf., vol. 38, no. 4, pp. 474–480, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.12.031.
  • L. Wang, M. Chen, S. Shi, D. Che, and X. Sun, “Multi-objective optimization of a printed circuit heat exchanger design,” presented at the Proceedings of the 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Xi’an, China, Sept. 3–8, 2017.
  • C. Huang et al., “Review on the characteristics of flow and heat transfer in printed circuit heat exchangers,” Appl. Therm. Eng., vol. 153, pp. 190–205, 2019. DOI: 10.1016/j.applthermaleng.2019.02.131.
  • R. de la Torre, J.-L. Francois, and C.-X. Lin, “Optimization and heat transfer correlations development of zigzag channel printed circuit heat exchangers with helium fluids at high temperature,” Int. J. Therm. Sci., vol. 160, pp. 106645, 2021. DOI: 10.1016/j.ijthermalsci.2020.106645.
  • M. Chen, X. Sun, and R. N. Christensen, “Thermal-hydraulic performance of printed circuit heat exchangers with zigzag flow channels,” Int. J. Heat Mass Transf., vol. 130, pp. 356–367, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.031.
  • S. K. Mylavarapu, “Design, fabrication, performance testing, and modeling of diffusion bonded compact heat exchangers in a high-temperature helium test facility,” The Ohio State University, 2011. Available: https://scholar.google.com/scholar_lookup?title=Design%2C%20Fabrication%2C%20Performance%20Testing%2C%20and%20Modeling%20of%20Diffusion%20Bonded%20Compact%20Heat%20Exchangers%20in%20a%20High-temperature%20Helium%20Test%20Facility&publication_year=2011&author=S.K.%20Mylavarapu
  • S. K. Mylavarapu, X. Sun, R. E. Glosup, R. N. Christensen, and M. W. Patterson, “Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility,” Appl. Therm. Eng., vol. 65, no. 1-2, pp. 605–614, 2014. DOI: 10.1016/j.applthermaleng.2014.01.025.
  • S. Mylavarapu, X. Sun, J. Figley, N. Needler, and R. Christensen, “Investigation of high-temperature printed circuit heat exchangers for very high temperature reactors,” J. Eng. Gas Turb. Power, vol. 131, no. 6, 2009. DOI: 10.1115/1.3098425.
  • S.-M. Lee, G.-W. Koo, and K.-Y. Kim, “Parametric study on hydraulic performance of an inlet plenum in a printed-circuit heat exchanger,” Sci. China Technol. Sci., vol. 56, no. 9, pp. 2137–2142, 2013. DOI: 10.1007/s11431-013-5294-2.
  • I. H. Kim and H. C. No, “Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium–water test loop and numerical simulations,” Appl. Therm. Eng., vol. 31, no. 1718, pp. 4064–4073, 2011. DOI: 10.1016/j.applthermaleng.2011.08.012.
  • I. H. Kim and H. C. No, “Thermal–hydraulic physical models for a Printed Circuit Heat Exchanger covering He, He–CO2 mixture, and water fluids using experimental data and CFD,” Exp. Therm. Fluid Sci., vol. 48, pp. 213–221, 2013. DOI: 10.1016/j.expthermflusci.2013.03.003.
  • W. Kim, Y.-J. Baik, S. Jeon, D. Jeon, and C. Byon, “A mathematical correlation for predicting the thermal performance of cross, parallel, and counterflow PCHEs,” Int. J. Heat Mass Transf., vol. 106, pp. 1294–1302, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.110.
  • H. H. Khan, Aneesh A. M., A. Sharma, A. Srivastava and P. Chaudhuri, “Thermal-hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger,” Appl. Therm. Eng., vol. 87, pp. 519–528, 2015. DOI: 10.1016/j.applthermaleng.2015.04.077.
  • N. Bartel et al., “Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors,” Ann. Nucl. Energy, vol. 81, pp. 143–149, 2015. DOI: 10.1016/j.anucene.2015.03.029.
  • M. Saeed and M.-H. Kim, “Thermal and hydraulic performance of SCO2 PCHE with different fin configurations,” Appl. Therm. Eng., vol. 127, pp. 975–985, 2017. DOI: 10.1016/j.applthermaleng.2017.08.113.
  • S. Patankar, C. Liu, and E. Sparrow, “Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area,” J. Heat Trans-T ASME, vol. 99, no. 2, pp. 180–186, 1977. DOI: 10.1115/1.3450666.
  • I. H. Kim, H. C. No, J. I. Lee, and B. G. Jeon, “Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations,” Nucl. Eng. Des., vol. 239, no. 11, pp. 2399–2408, 2009. DOI: 10.1016/j.nucengdes.2009.07.005.
  • S. Y. Lee, B. G. Park, and J. T. Chung, “Numerical studies on thermal hydraulic performance of zigzag-type printed circuit heat exchanger with inserted straight channels,” Appl. Therm. Eng., vol. 123, pp. 1434–1443, 2017. DOI: 10.1016/j.applthermaleng.2017.05.198.
  • T. Ma, L. Li, X.-Y. Xu, Y.-T. Chen, and Q.-W. Wang, “Study on local thermal–hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature,” Energy Convers. Manag., vol. 104, pp. 55–66, 2015. DOI: 10.1016/j.enconman.2015.03.016.
  • H. Zhang, J. Guo, X. Huai, K. Cheng, and X. Cui, “Studies on the thermal-hydraulic performance of zigzag channel with supercritical pressure CO2,” J. Supercrit. Fluids, vol. 148, pp. 104–115, 2019. DOI: 10.1016/j.supflu.2019.03.003.
  • C. Andrade, “The P value and statistical significance: Misunderstandings, explanations, challenges, and alternatives,” Indian J. Psychol. Med., vol. 41, no. 3, pp. 210–215, 2019. DOI: 10.4103/IJPSYM.IJPSYM_193_19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.