Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 3
404
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Numerical study of thermal-hydraulic performance of sCO2-molten salt printed circuit heat exchanger with discontinuous fins channel

, , , &
Pages 198-218 | Received 25 Apr 2022, Accepted 18 Jul 2022, Published online: 24 Aug 2022

References

  • Y.-L. He, K. Wang, Y. Qiu, B.-C. Du, Q. Liang and S. Du, “Review of the solar flux distribution in concentrated solar power: on-uniform features, challenges, and solutions,” Appl. Therm. Eng., vol. 149, pp. 448–474, Feb. 2019. DOI: 10.1016/j.applthermaleng.2018.12.006.
  • S. Mekhilef, R. Saidur and A. Safaria, “A review on solar energy use in industries,” Renew Sustain Energy Rev., vol. 15, no. 4, pp. 1777–1790, May 2011. DOI: 10.1016/j.rser.2010.12.018.
  • M. Mehos, C. Turchi and J. Vidal, “Concentrating Solar Power Gen 3 Demonstration Roadmap,” NREL Technical Report, 2017.
  • V. Dostal, P. Hejzlar and M. J. Driscoll, “The supercritical carbon dioxide power cycle: comparison to other advanced power cycles,” Nucl. Technol., vol. 154, no. 3, pp. 283–301, Apr. 2006. DOI: 10.13182/NT06-A3734.
  • B. D. Iverson, T. M. Conboy, J. J. Pasch and A. M. Kruizengab, “Supercritical CO2 Brayton cycles for solar-thermal energy,” Appl. Energy, vol. 111, pp. 957–970, Nov. 2013. DOI: 10.1016/j.apenergy.2013.06.020.
  • J. Xu, et al., “Perspective of S-CO2 power cycles,” Energy, vol. 186, pp. 115831, Nov. 2019. DOI: 10.1016/j.energy.2019.07.161.
  • C. Dang, K. Iino, K. Fukuoka and E. Hihara, “Effect of lubricating oil on cooling heat transfer of supercritical carbon dioxide,” Int. J. Refrig., vol. 30, no. 4, pp. 724–731, Jun. 2007. DOI: 10.1016/j.ijrefrig.2006.09.006.
  • S. M. Liao and T. S. Zhao, “Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels,” J. Heat Transfer, vol. 124, no. 3, pp. 413–420, Jun. 2002. DOI: 10.1115/1.1423906.
  • K. Tanimizu and R. Sadr, “Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube,” Heat Mass Transfer, vol. 52, no. 4, pp. 713–726, May 2016. DOI: 10.1007/s00231-015-1580-9.
  • C. Huang, W. Cai, Y. Wang, Y. Liu, Q. Li and B. Li, “Review on the characteristics of flow and heat transfer in printed circuit heat exchangers,” Appl. Therm. Eng., vol. 153, pp. 190–205, May 2019. DOI: 10.1016/j.applthermaleng.2019.02.131.
  • S. Baek, J.-H. Kim, S. Jeong and J. Jung, “Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction,” Cryogenics, vol. 52, no. 7–9, pp. 366–374, Jul. 2012. DOI: 10.1016/j.cryogenics.2012.03.001.
  • N. Tsuzuki, Y. KATO, K. Nikitin and T. Ishizuka, “Advanced microchannel heat exchanger with S-shaped Fins,” J. Nucl. Sci. Technol., vol. 46, no. 5, pp. 403–412, Mar. 2009. DOI: 10.1080/18811248.2007.9711547.
  • A. Kruizenga, M. Anderson and R. Fatima, “Heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries,” Int. Heat Transfer Conf., vol. 3, no. 3, pp. 1–8, 2011. DOI: 10.1115/IHTC14-22880.
  • S. Baik, S. G. Kim, J. Lee, et al., “Study on CO2-water printed circuit heat exchanger performance operating under various CO2 phases for S-CO2 power cycle application,” Appl. Therm. Eng., vol. 113, pp. 1536–1546, Nov. 2017. DOI: 10.1016/j.applthermaleng.2016.11.132.
  • B. Zohuri, Compact Heat Exchangers, Springer, 2017,
  • S. M. Lee and K. Y. Kim, “Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations,” Heat Mass Transfer, vol. 49, no. 7, pp. 1021–1028, Jul. 2013. DOI: 10.1007/s00231-013-1149-4.
  • M. Saeed and M. H. Kim, “Thermal and hydraulic performance of CO2 PCHE with different fin configurations,” APPl. Therm. Eng., vol. 127, pp. 975–985, Dec 2017. DOI: 10.1016/j.applthermaleng.2017.08.113.
  • T. Ishizuka, et al., “Thermal-Hydraulic Characteristics of a Printed Circuit Heat Exchanger in a Supercritical CO2 Loop,” The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11); 2005, pp. 10.
  • A. Meshram, A. K. Jaiswal, S. D. Khivsara, et al., “Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications,” Appl. Therm. Eng., vol. 109, no. 25, pp. 861–870, Oct. 2016. DOI: 10.1016/j.applthermaleng.2016.05.033.
  • T. L. Ngo, Y. Kato, K. Nikitin and T. Ishizuka, “Heat transfer and pressure drop correlations of microchannel heat exchangers with shaped and zigzag fins for carbon dioxide cycles,” Exp. Therm. Fluid Sci., vol. 32, no. 2, pp. 560–570, Nov. 2007. DOI: 10.1016/j.expthermflusci.2007.06.006.
  • D. E. Kim, M. H. Kim, J. E. Cha and S. O. Kim, “Numerical investigation of thermal-hydraulic performance of new printed circuit heat exchanger model,” Nucl. Eng. Des., vol. 238, no. 12, pp. 3269–3276, Dec. 2008. DOI: 10.1016/j.nucengdes.2008.08.002.
  • B. Choi, “Numerical study on thermal hydraulic performance in airfoil fin type printed circuit heat exchanger,” PhD thesis, POSTECH, Pohang, 2010.
  • X. Y. Cui, J. F. Guo, X. L. Huai, et al., “Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2,” Int. J. Heat Mass Transfer, vol. 121, pp. 354–366, Jun. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.015.
  • S. H. Yoon, H. C. No and G. B. Kang, “Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs,” Nucl. Eng. Des., vol. 270, no. 15, pp. 334–343, Apr. 2014. DOI: 10.1016/j.nucengdes.2014.01.006.
  • M. Caccia, M. Tabandeh-Khorshid, G. Itskos, et al., “Ceramic–metal composites for heat exchangers in concentrated solar power plants,” Nature, vol. 562, no. 7727, pp. 406–409, Oct. 2018. DOI: 10.1038/s41586-018-0593-1.
  • H. Y. Shi, M. J. Li, W. Q. Wang, et al., “Heat transfer and friction of molten salt and supercritical CO2 flowing in an airfoil channel of a printed circuit heat exchanger,” Int. J. Heat Mass Transfer, vol. 150, pp. 119006, Apr. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119006.
  • T. H. Kim, J. G. Kwon, S. H. Yoon, et al., “Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle,” Nucl. Eng. Des., vol. 288, pp. 110–118, Jul. 2015. DOI: 10.1016/j.nucengdes.2015.03.013.
  • Y. T. Wu, N. Ren, T. Wang and C. F. Ma, “Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant,” Solar Energy, vol. 85, no. 9, pp. 1957–1966, Sep. 2011. DOI: 10.1016/j.solener.2011.05.004.
  • P. J. Linstrom and W. G. Mallard, National Institute of Standards and Technology: Gaithersburg, MD, 2005, pp. 2011,
  • W. Q. Wang, Y. Qiu, Y. L. He, et al., “Experimental study on the heat transfer performance of a molten-salt printed circuit heat exchanger with airfoil fins for concentrating solar power,” Int. J. Heat Mass Transfer, vol. 135, pp. 837–846, Jun. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.012.
  • J. E. Hesselgreaves, “Rationalisation of second law analysis of heat exchangers,” Int. J. Heat Mass Transfer, vol. 43, no. 22, pp. 4189–4204, Nov. 2000. DOI: 10.1016/S0017-9310(99)00364-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.