Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 3
197
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The impact of the pseudo-boiling on the thermal behaviors of supercritical CO2

, , , , &
Pages 238-251 | Received 25 Apr 2022, Accepted 18 Jul 2022, Published online: 03 Aug 2022

References

  • C. Leng, et al., “Heat transfer enhancement of microchannel heat sink using transcritical carbon dioxide as the coolant[J],” Energy Convers. Manage., vol. 110, pp. 154–164, 2016. DOI: 10.1016/j.enconman.2015.12.006.
  • V. Wolf, A. Bertrand, and S. Leyer, “Analysis of the thermodynamic performance of transcritical CO2 power cycle configurations for low grade waste heat recovery[J],” Energy Reports, vol. 8, pp. 4196–4208, 2022. DOI: 10.1016/j.egyr.2022.03.040.
  • M. Biondi, et al., “Techno-economic analysis of a sCO2 power plant for waste heat recovery in steel industry[J],” Energy Reports, vol. 6, pp. 298–304, 2020. DOI: 10.1016/j.egyr.2020.11.147.
  • Y. Yang, C. Li, N. Wang, and Z.-P. Yang, “Progress and prospects of innovative coal-fired power plants within the energy internet[J],” Global Energy Interconnection, vol. 2, no. 2, pp. 160–179, 2019. DOI: 10.1016/j.gloei.2019.07.007.
  • C. Wu, S.-S. Wang, and J. Li, “Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants[J],” Energy Convers. Manage., vol. 171, pp. 936–952, 2018. DOI: 10.1016/j.enconman.2018.06.041.
  • J. Zhou, et al., “Exergy analysis of a 1000 MW single reheat supercritical CO2 Brayton cycle coal-fired power plant[J],” Energy Convers. Manage., vol. 173, pp. 348–358, 2018. DOI: 10.1016/j.enconman.2018.07.096.
  • S. Khatoon and M.-H. Kim, “Preliminary design and assessment of concentrated solar power plant using supercritical carbon dioxide Brayton cycles[J],” Energy Convers. Manage., vol. 252, pp. 115066, 2022. DOI: 10.1016/j.enconman.2021.115066.
  • M. Chen, et al., “Supercritical CO2 Brayton cycle: Intelligent construction method and case study[J],” Energy Convers. Manage., vol. 246, pp. 114662, 2021. DOI: 10.1016/j.enconman.2021.114662.
  • P. Tafur-Escanta, et al., “Electrical energy storage using a supercritical CO2 heat pump[J],” Energy Reports, vol. 8, pp. 502–507, 2022. DOI: 10.1016/j.egyr.2022.01.073.
  • X. Wang, M. Xiang, H. Huo, and L. Qi, “Numerical study on nonuniform heat transfer of supercritical pressure carbon dioxide during cooling in horizontal circular tube[J],” Appl. Thermal Engin., vol. 141, pp. 775–787, 2018. DOI: 10.1016/j.applthermaleng.2018.06.019.
  • J. Xu, et al., “Perspective of S−CO2 power cycles[J],” Energy, vol. 186, pp. 115831, 2019. DOI: 10.1016/j.energy.2019.07.161.
  • M.-T. Luu, D. Milani, R. Mcnaughton, and A. Abbas, “Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems[J],” Energy, vol. 124, pp. 752–771, 2017. DOI: 10.1016/j.energy.2017.02.040.
  • X. Chu, E. Laurien, and D.-M. Mceligot, “Direct numerical simulation of strongly heated air flow in a vertical pipe[J],” Int. J. Heat and Mass Transfer, vol. 101, pp. 1163–1176, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.038.
  • X.-L. Li, P.-X. Jiang, R.-N. Xu, and L.-L. Wei, “Experimental investigation on the natural convection heat transfer in the vertical annulus of a CO2 injection well under steady-state conditions,” Int. J. Greenhouse Gas Control, vol. 52, pp. 387–400, 2016. DOI: 10.1016/j.ijggc.2016.07.011.
  • S. Liu, Y. Huang, G. Liu, J. Wang, and L. Leung, “Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J],” Int. J. Heat and Mass Transfer, vol. 106, pp. 1144–1156, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.093.
  • X. Luo, et al., “Effect of lattice structures on heat transfer deterioration of supercritical CO2 in rectangle channels[J],” Numer. Heat Transfer, Part A: Appl., vol. 77, no. 11, pp. 931–950, 2020. DOI: 10.1080/10407782.2020.1746168.
  • R.-N. Xu, F. Luo, and P.-X. Jiang, “Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements[J].,” Int. J. Heat and Mass Transfer, vol. 110, pp. 576–586, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.063.
  • J. Guo, et al., “Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions[J].,” Energy, vol. 170, pp. 1067–1081, 2019. DOI: 10.1016/j.energy.2018.12.177.
  • Q. Zhang, H. Li, J. Liu, X.-L. Lei, and C. Wu, “Numerical investigation of different heat transfer behaviors of supercritical CO2 in a large vertical tube[J],” Int. J. Heat and Mass Transfer, vol. 147, pp. 118944, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118944.
  • Z. Zhao, et al., “Numerical investigation on conjugate cooling heat transfer to supercritical CO2 in vertical double-pipe heat exchangers[J].,” Numer. Heat Transfer, Part A: Appl., vol. 69, no. 5, pp. 512–528, 2016. DOI: 10.1080/10407782.2015.1081026.
  • B. Sunden, D. Huang, and Z. Wu, “A numerical study on flow and convective heat transfer of aviation kerosene in a vertical mini-tube at supercritical pressures[J],” Ciesc J., vol. 415, no. 7, pp. 433–453, 2015.
  • H. Zahlan, D. Groeneveld, and S. Tavoularis, “Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures[J],” Nuclear Engin. Design, vol. 289, pp. 92–107, 2015. DOI: 10.1016/j.nucengdes.2015.04.013.
  • J.-G. Yan, F.-L. Zhu, P.-C. Guo, and X.-Q. Luo, “Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions[J],” CIESC J., vol. 70, no. 05, pp. 1779–1787, 2019.
  • W. Yang, G. Xiao, K.-X. Xing, M.-J. Ni, and K.-F. Cen, “Experimental investigation on heat transfer characteristics of supercritical CO2[J],” Thermal Power Generation, vol. 47, no. 12, pp. 29–34, 2018.
  • S.-Q. Yu, et al., “Influence of buoyancy on heat transfer to water flowing in horizontal tubes under supercritical pressure[J],” Appl. Thermal Engin., vol. 59, no. 1–2, pp. 380–388, 2013. DOI: 10.1016/j.applthermaleng.2013.05.034.
  • H.-S. Zhan, X.-J. Zhu, B.-G. Zhu, J.-L. Xu, and H. Liu, “Effects of buoyancy and acceleration on heat transfer of supercritical CO2 flowing in tubes[J],” Acta Phys. Sin., vol. 69, no. 6, pp. 126–135, 2020.
  • J. Wang, et al., “Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube[J],” Energy Convers. Manage., vol. 157, pp. 536–548, 2018. DOI: 10.1016/j.enconman.2017.12.046.
  • M. Xiang, J. Guo, X. Huai, and X.-Y. Cui, “Thermal analysis of supercritical pressure CO2 in horizontal tubes under cooling condition[J],” J. Supercrit. Fluids, vol. 130, pp. 389–398, 2017. DOI: 10.1016/j.supflu.2017.04.009.
  • G. Liu, Y. Huang, J. Wang, and L. H. Leung, “Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop[J],” APPl. Thermal Engin., vol. 98, pp. 39–48, 2016. DOI: 10.1016/j.applthermaleng.2015.11.110.
  • L. Cen, X.-R. Zhang, and B. Jiang, “Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop[J],” J. Heat Transfer, vol. 136, no. 5, pp. 052501, 2014.
  • X.-R. Zhang, L. Chen, and H. Yamaguchi, “Natural convective flow and heat transfer of supercritical CO2 in a rectangular circulation loop[J],” Int. J. Heat and Mass Transfer, vol. 53, no. 19-20, pp. 4112–4122, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.031.
  • Z. Yu, et al., “Numerical investigation on cooling heat transfer and flow characteristics of supercritical CO2 in spirally fluted tube at various inclination angles[J],” Int. J. Thermal Sci., vol. 166, pp. 106916, 2021. DOI: 10.1016/j.ijthermalsci.2021.106916.
  • Z. Yu, L. Tao, L. Huang, and D. Wang, “Numerical investigation on cooling heat transfer and flow characteristic of supercritical CO2 in spirally fluted tubes[J],” Int. J. Heat and Mass Transfer, vol. 163, pp. 120399, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120399.
  • X.-X. Liu, et al., “Heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube[J].,” CIESC J., vol. 67, no. 2, pp. 120–127, 2016.
  • H.-T. Cui, S.-W. Liu, and S.-Z. Wang, “Numerical simulation of convective heat transfer of supercritical carbon dioxide in horizontal spiral tube[J],” Pressure Vessel Technol., vol. 36, no. 2, pp. 22–29, 2019.
  • S.-X. Wang, Z.-Y. Niu, W. Zhang, and J.-L. Xu, “Experimental investigations on heat transfer of supercritical CO2 flowing through a helically coiled tube[J].,” Nuclear Power Engin., vol. 35, no. 1, pp. 28–31, 2014.
  • M. Yang, G.-R. Li, F. Liao, J.-D. Li, and X. Zhou, “Numerical study of characteristic influence on heat transfer of supercritical CO2 in helically coiled tube with non-circular cross section[J],” Int. J. Heat and Mass Transfer, vol. 176, pp. 121511, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121511.
  • X.-X. Liu, et al., “Flow structure with mixed turbulent flow of supercritical CO2 heated in helically coiled tube[J],” Appl. Thermal Engin., vol. 189, pp. 116684, 2021. DOI: 10.1016/j.applthermaleng.2021.116684.
  • X.-X. Liu, X.-X. Xu, C. Liu, J.-C. He, and C.-B. Dang, “The effect of geometry parameters on the heat transfer performance of supercritical CO2 in horizontal helically coiled tube under the cooling condition[J],” Int. J. Refrigeration, vol. 106, pp. 650–661, 2019. DOI: 10.1016/j.ijrefrig.2019.02.008.
  • N. Yuan, et al., “Flow and heat transfer performance of supercritical pressure carbon dioxide in pipes with discrete double inclined ribs[J],” Int. J. Heat and Mass Transfer, vol. 149, pp. 119175, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119175.
  • N.-B. Zheng, W. Liu, Z.-C. Liu, P. Liu, and F. Shan, “A numerical study on heat transfer enhancement and the flow structure in a heat exchanger tube with discrete double inclined ribs[J],” Appl. Thermal Engin., vol. 90, pp. 232–241, 2015. DOI: 10.1016/j.applthermaleng.2015.07.009.
  • H.-I. Mohammed, P.-T. Sardari, and D. Giddings, “Multiphase flow and boiling heat transfer modelling of nanofluids in horizontal tubes embedded in a metal foam[J],” Int. J. Thermal Sci., vol. 146, pp. 106099, 2019. DOI: 10.1016/j.ijthermalsci.2019.106099.
  • G.-G. Simeoni, et al., “The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids[J],” Nature Phys., vol. 6, no. 7, pp. 503–507, 2010. DOI: 10.1038/nphys1683.
  • S.-E.-D. El-Morshedy, et al., “Heat transfer deterioration mechanism for water at supercritical pressure[J],” Int. J. Thermofluids, vol. 7–8, pp. 100020, 2020. DOI: 10.1016/j.ijft.2020.100020.
  • G.-A. Adebiyi and W.-B. Hall, “Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe[J],” Int. J. Heat and Mass Transfer, vol. 19, no. 7, pp. 715–720, 1976. DOI: 10.1016/0017-9310(76)90123-X.
  • K.-Z. Wang, X.-X. Xu, Y.-Y. Wu, C. Liu, and C.-B. Dang, “Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J],” J. Supercrit. Fluids, vol. 99, pp. 112–120, 2015. DOI: 10.1016/j.supflu.2015.02.001.
  • J. D. Jackson, “Fluid flow and convective heat transfer to fluids at supercritical pressure[J],” Nuclear Engin. Design, vol. 264, pp. 24–40, 2013. DOI: 10.1016/j.nucengdes.2012.09.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.