Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 3
202
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Natural convection of Boussinesq and non-Boussinesq airflows simulated in a tall annular cavity

&
Pages 269-295 | Received 15 Apr 2022, Accepted 18 Jul 2022, Published online: 23 Aug 2022

References

  • E. R. G. Eckertf and W. O. Carlson, “Natural convection in an air layer enclosed between two vertical plates with different temperatures,” Int. J. Heat and Mass Transfer, vol. 2, no. 1-2, pp. 106–120, 1961. DOI: 10.1016/0017-9310(61)90019-9.
  • J. W. Elder, “Laminar free convection in a vertical slot,” J. Fluid Mech., vol. 23, no. 1, pp. 77–98, 1965. DOI: 10.1017/S0022112065001246.
  • C. M. Vest and V. S. Arpaci, “Stability of natural convection in a vertical slot,” J. Fluid Mech., vol. 36, no. 1, pp. 1–15, 1969. DOI: 10.1017/S0022112069001467.
  • S. A. Korpela, “A study on the effect of Prandtl number on the stability of the conduction regime of natural convection in an inclined slot,” Int. J. Heat and Mass Transfer, vol. 17, no. 2, pp. 215–222, 1974. DOI: 10.1016/0017-9310(74)90083-0.
  • S. M. ElSherbiny, G. D. Raithby, and K. G. T. Hollands, “Heat transfer by natural convection across vertical and inclined air layers,” J. Heat Transfer, vol. 104, no. 1, pp. 96–102, 1982. DOI: 10.1115/1.3245075.
  • P. G. Simpkins and J. E. Godreau, “Onset of periodic convection in a vertical slot,” Phys. Fluids A: Fluid Dynamics, vol. 1, no. 9, pp. 1479–1483, 1989. DOI: 10.1063/1.857326.
  • E. Shewen, K. G. T. Hollands, and G. D. Raithby, “Heat transfer by natural convection across a vertical air cavity of large aspect ratio,” J. Heat Transfer, vol. 118, no. 4, pp. 993–995, 1996. DOI: 10.1115/1.2822603.
  • Y. Lee and S. A. Korpela, “Multicellular natural convection in a vertical slot,” J. Fluid Mech., vol. 126, pp. 91–121, 1983. DOI: 10.1017/S0022112083000063.
  • A. Chait and S. A. Korpela, “The secondary flow and its stability for natural convection in a tall vertical enclosure,” J. Fluid Mech., vol. 200, pp. 189–216, 1989. DOI: 10.1017/S0022112089000625.
  • P. Le Quéré, “A note on multiple and unsteady solutions in two-dimensional convection in a tall cavity,” J. Heat Transfer, vol. 112, no. 4, pp. 965–974, 1990.
  • S. Wakitani, “Development of multicellular solutions in natural convection in an air-filled vertical cavity,” J. Heat Transfer, vol. 119, no. 1, pp. 97–101, 1997. DOI: 10.1115/1.2824106.
  • S. Wakitani, “Flow patterns of natural convection in an air-filled vertical cavity,” Phys. Fluids, vol. 10, no. 8, pp. 1924–1928, 1998. DOI: 10.1063/1.869708.
  • Y. Zhao, W. P. Goss, and D. Curcija, Prediction of the Multicellular Flow Regime of Natural Convection in Fenestration Glazing Cavities. No. CONF-9702141–. Atlanta, GA:American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1997, ISSN 0001-2505
  • J. L. Wright and H. F. Sullivan, “OR-94-20-3 – A two-dimensional numerical model for natural convection in a vertical, rectangular window cavity,” ASHRAE Transactions, Proceedings of the 1994 American Society of Heating, Refrigerating and Air-Conditioning Engineers Annual Meeting, Orlando, FL, 100(2), pp. 1193–1206, 1994.
  • G. K. Batchelor, “Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures,” Quart. Appl. Math., vol. 12, no. 3, pp. 209–233, 1954. DOI: 10.1090/qam/64563.
  • S. A. Korpela, D. Gözüm, and C. B. Baxi, “On the stability of the conduction regime of natural convection in a vertical slot,” Int. J. Heat and Mass Transfer, vol. 16, no. 9, pp. 1683–1690, 1973. DOI: 10.1016/0017-9310(73)90161-0.
  • R. F. Bergholz, “Instability of steady natural convection in a vertical fluid layer,” J. Fluid Mech., vol. 84, no. 4, pp. 743–768, 1978. DOI: 10.1017/S0022112078000452.
  • J. Mizushima and H. Tanaka, “Transitions of natural convection in a vertical fluid layer,” Phys. Fluids, vol. 14, no. 4, pp. L21–L24, 2002. DOI: 10.1063/1.1449900.
  • J. Mizushima and H. Tanaka, “Transition routes of natural convection in a vertical fluid layer,” J. Phys. Soc. Jpn., vol. 71, no. 12, pp. 2898–2906, 2002. DOI: 10.1143/JPSJ.71.2898.
  • G. D. V. Davis and R. W. Thomas, “Natural convection between concentric vertical cylinders,” Phys. Fluids, vol. 12, no. 12, pp. II-198, 1969. DOI: 10.1063/1.1692437.
  • R. W. Thomas and G. de Vahl Davis, Natural Convection in Annular and Rectangular Cavities. A Numerical Study. Kensington, Australia: Univ. of New South Wales, 1970.
  • I. G. Choi and S. A. Korpela, “Stability of the conduction regime of natural convection in a tall vertical annulus,” J. Fluid Mech., vol. 99, no. 4, pp. 725–738, 1980. DOI: 10.1017/S0022112080000869.
  • Y. Lee et al., “Structure of multi-cellular natural convection in a tall vertical annulus,” Proc. 7th International Heat Transfer Conference, In U. Grigul eds., Hemisphere, Washington, DC, 1982, vol. 2, pp. 221–226.
  • P. Le Quéré and J. Pécheux, “Numerical simulations of multiple flow transitions in axisymmetric annulus convection,” J. Fluid Mech., vol. 206, pp. 517–544, 1989. DOI: 10.1017/S0022112089002399.
  • J. Pécheux, P. L. Quéré, and F. Abcha, “Curvature effects on axisymmetric instability of conduction regime in a tall air‐filled annulus,” Phys. Fluids, vol. 6, no. 10, pp. 3247–3255, 1994. DOI: 10.1063/1.868057.
  • G. B. McFadden, S. R. Coriell, R. F. Boisvert, and M. E. Glicksman, “Asymmetric instabilities in buoyancy‐driven flow in a tall vertical annulus,” Phys. Fluids, vol. 27, no. 6, pp. 1359–1361, 1984. DOI: 10.1063/1.864777.
  • P. D. Weidman and G. Mehrdadtehranfar, “Instability of natural convection in a tall vertical annulus,” Phys. Fluids, vol. 28, no. 3, pp. 776–787, 1985. DOI: 10.1063/1.865045.
  • Q. T. Fang, M. E. Glicksman, S. R. Coriell, G. B. McFadden and R. F. Boisvert, “Convective influence on the stability of a cylindrical solid–liquid interface,” J. Fluid Mech., vol. 151, no. 1, pp. 121–140, 1985. DOI: 10.1017/S0022112085000891.
  • V. Lepiller, A. Prigent, F. Dumouchel, and I. Mutabazi, “Transition to turbulence in a tall annulus submitted to a radial temperature gradient,” Phys. Fluids, vol. 19, no. 5, pp. 054101, 2007. DOI: 10.1063/1.2721756.
  • S. Sondur and A. M. Mescher, “Investigation on the stability of natural convection in an annular cavity with non-isothermal walls,” Exper. Thermal Fluid Sci., vol. 115, pp. 110053, 2020. DOI: 10.1016/j.expthermflusci.2020.110053.
  • S. Thangam and C. F. Chen, “Stability analysis on the convection of a variable viscosity fluid in an infinite vertical slot,” Phys. Fluids, vol. 29, no. 5, pp. 1367–1372, 1986. DOI: 10.1063/1.865702.
  • S. A. Suslov and S. Paolucci, “Stability of natural convection flow in a tall vertical enclosure under non-Boussinesq conditions,” Int. J. Heat and Mass Transfer, vol. 38, no. 12, pp. 2143–2157, 1995. DOI: 10.1016/0017-9310(94)00348-Y.
  • D. R. Chenoweth and S. Paolucci, “Natural convection in an enclosed vertical air layer with large horizontal temperature differences,” J. Fluid Mech., vol. 169, no. 1, pp. 173–210, 1986. DOI: 10.1017/S0022112086000587.
  • M. Darbandi and S. F. Hosseinizadeh, “Numerical study of natural convection in vertical enclosures using a novel non-Boussinesq algorithm,” Numer. Heat Transfer, Part A: Appl., vol. 52, no. 9, pp. 849–873, 2007. DOI: 10.1080/10407780701340155.
  • P. Le Quéré, R. Masson and P. Perrot, “A Chebyshev collocation algorithm for 2D non-Boussinesq convection,” J. Comput. Phys., vol. 103, no. 2, pp. 320–335, 1992. DOI: 10.1016/0021-9991(92)90404-M.
  • J. L. Wright, H. Jin, K. G. T. Hollands and D. Naylor, “Flow visualization of natural convection in a tall, air-filled vertical cavity,” Int. J. Heat and Mass Transfer, vol. 49, no. 5–6, pp. 889–904, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.06.045.
  • B. Lartigue, S. Lorente, and B. Bourret, “Multicellular natural convection in a high aspect ratio cavity: Experimental and numerical results,” Int. J. Heat and Mass Transfer, vol. 43, no. 17, pp. 3157–3170, 2000. DOI: 10.1016/S0017-9310(99)00362-2.
  • D. D. Gray and A. Giorgini, “The validity of the Boussinesq approximation for liquids and gases,” Int. J. Heat and Mass Transfer, vol. 19, no. 5, pp. 545–551, 1976. DOI: 10.1016/0017-9310(76)90168-X.
  • M. Prud’homme and P. Le Quéré, “Stability of stratified natural convection in a tall vertical annular cavity,” Phys. Fluids, vol. 19, no. 9, pp. 094106, 2007. DOI: 10.1063/1.2771260.
  • S. Turns and D. Kraige, Properties Tables Booklet for Thermal Fluids Engineering, New York, NY: Cambridge University Press, 2007.
  • S. Sondur, B. Meuris, and A. Mescher, “Benchmarked Simulations of Natural Convection Airflow in a Square Cavity,” Numerical Heat Transfer, Part A: Applications, 2022. DOI: 10.1080/10407782.2022.2105120.
  • P. Le Quéré and F. Penot, “Numerical and experimental investigation of the transition to unsteady natural convection of air in a vertical differentially heated cavity,” ASME HTD, vol. 94, pp. 75–82, 1987.
  • H. Paillere, C. Viozat, A. Kumbaro, and I. Toumi, “Comparison of low Mach number models for natural convection problems,” Heat and Mass Transfer, vol. 36, no. 6, pp. 567–573, 2000. DOI: 10.1007/s002310000116.
  • I. J. Keshtiban, F. Belblidia, and M. F. Webster, “Compressible flow solvers for low Mach number flows—a review,” Int. J. Numer. Methods Fluids, vol. 23, pp. 77–103, 2004.
  • H. Guillard and C. Viozat, “On the behaviour of upwind schemes in the low Mach number limit,” Computers & Fluids, vol. 28, no. 1, pp. 63–86, 1999. DOI: 10.1016/S0045-7930(98)00017-6.
  • P. Le Quéré, et al., “Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers. Part 1. Reference solutions,” ESAIM: M2AN, vol. 39, no. 3, pp. 609–616, 2005. DOI: 10.1051/m2an:2005027.
  • H. Paillère, et al., “Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference,” ESAIM: M2AN, vol. 39, no. 3, pp. 617–621, 2005. DOI: 10.1051/m2an:2005025.
  • V. Prasad and F. A. Kulacki, “Free convective heat transfer in a liquid-filled vertical annulus,” J. Heat Transfer, vol. 107, no. 3, pp. 596–602, 1985. DOI: 10.1115/1.3247466.
  • R. Kumar and M. A. Kalam, “Laminar thermal convection between vertical coaxial isothermal cylinders,” Int. J. Heat and Mass Transfer, vol. 34, no. 2, pp. 513–524, 1991. DOI: 10.1016/0017-9310(91)90270-O.
  • L.-C. Weng and H.-S. Chu, “Combined natural convection and radiation in a vertical annulusNatürliche Konvektion und Wärmestrahlung in einem vertikalen Ringkanal,” Heat and Mass Transfer, vol. 31, no. 6, pp. 371–379, 1996. DOI: 10.1007/BF02172581.
  • N. Sheriff, Experimental investigation of natural convection in single and multiple vertical annuli with high pressure carbon dioxide, Proceedings of the Third International Heat Transfer Conference, Chicago, Illinois. pp 132–8 of August 7–12, 1966, Volume II. New York: American Institute of Chemical Engineers, 1966. United Kingdom Atomic Energy Authority, Risley, Eng., 1967.
  • M. Keyhani, F. A. Kulacki, and R. N. Christensen, “Free convection in a vertical annulus with constant heat flux on the inner wall,” J. Heat Transfer, vol. 105, no. 3, pp. 454–459, 1983. DOI: 10.1115/1.3245606.
  • J. A. Khan and R. Kumar, “Natural convection in vertical annuli: A numerical study for constant heat flux on the inner wall,” J. Heat Transfer, vol. 111, no. 4, pp. 909–915, 1989. DOI: 10.1115/1.3250805.
  • B. B. Rogers and L. S. Yao, “Natural convection in a heated annulus,” Int. J. Heat and Mass Transfer, vol. 36, no. 1, pp. 35–47, 1993. DOI: 10.1016/0017-9310(93)80064-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.