Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 4
215
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparative study on heat transfer characteristics of molten PCM in PV/PCM air-based system based on grey relation analyses

, &
Pages 377-399 | Received 08 Mar 2022, Accepted 18 Jul 2022, Published online: 09 Aug 2022

References

  • D. Hasapis et al., “Design of large scale prosuming in universities: The solar energy vision of the TUC campus,” Energy Build., vol. 141, pp. 39–55, 2017. DOI: 10.1016/j.enbuild.2017.01.074.
  • N. Savvakis and T. Tsoutsos, “Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete,” Energy, vol. 90, pp. 1435–1455, 2015. DOI: 10.1016/j.energy.2015.06.098.
  • H. A. Hussien, M. Hasanuzzaman, A. H. Noman, and A. R. Abdulmunem, “Enhance photovoltaic/thermal system performance by using nanofluid,” 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014, 2014, pp. 1–5, DOI: 10.1049/cp.2014.1515.
  • E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells,” Renew. Energy, vol. 28, no. 1, pp. 1–12, 2003. DOI: 10.1016/S0960-1481(02)00015-0.
  • R. Abdulmunem, P. M. Samin, H. A. Rahman, H. A. Hussien, I. I. Mazali, and H. Ghazali, “Numerical and experimental analysis of the tilt ANGLE'S effects on the characteristics of the melting process of PCM-based as PV CELL'S backside heat SINK,” Renew. Energy, vol. 173, no. 4, pp. 520–530, 2021. DOI: 10.1016/j.renene.2021.04.014.
  • T. Ma, Z. Li, and J. Zhao, “Photovoltaic panel integrated with phase change materials (PV-PCM): Technology overview and materials selection,” Renew. Sustain. Energy Rev., vol. 116, pp. 109406, 2019. DOI: 10.1016/j.rser.2019.109406.
  • T. Häusler and H. Rogaß, “Photovoltaic module with latent heat-storage-collector,” 2nd World Conference on Photovoltaic Solar Energy Conversion, 1998, pp. 315–317.
  • M. J. Huang, P. C. Eames, and B. Norton, “Thermal regulation of building-integrated photovoltaics using phase change materials,” Int. J. Heat Mass Transf., vol. 47, no. 1213, pp. 2715–2733, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.11.015.
  • M. J. Huang, “The effect of using two PCMs on the thermal regulation performance of BIPV systems,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 3, pp. 957–963, 2011.
  • A. Karthick, K. K. Murugavel, and P. Ramanan, “Performance enhancement of a building-integrated photovoltaic module using phase change material,” Energy, vol. 142, pp. 803–812, 2018. DOI: 10.1016/j.energy.2017.10.090.
  • A. Hasan, S. J. Mccormack, M. J. Huang, and B. Norton, “Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics,” Sol. Energy, vol. 84, no. 9, pp. 1601–1612, 2010. DOI: 10.1016/j.solener.2010.06.010.
  • F. Hachem, B. Abdulhay, M. Ramadan, H. E. Hage, M. E. Rab, and M. Khaled, “Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance,” Renew. Energy, vol. 107, pp. 567–575, 2017. DOI: 10.1016/j.renene.2017.02.032.
  • S. Preet, “A review on the outlook of thermal management of photovoltaic panel using phase change material,” Energy Clim. Change, vol. 2, pp. 100033, 2021. DOI: 10.1016/j.egycc.2021.100033.
  • N. Ahmed, K. E. Elfeky, L. Lu, and Q. W. Wang, “Thermal and economic evaluation of thermocline combined sensible-latent heat thermal energy storage system for medium temperature applications,” Energy Convers. Manag., vol. 189, pp. 14–23, 2019. DOI: 10.1016/j.enconman.2019.03.040.
  • S. Sinha and S. S. Chandel, “Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems,” Renew. Sustain. Energy Rev., vol. 50, pp. 755–769, 2015. DOI: 10.1016/j.rser.2015.05.040.
  • S. Sharma, A. Tahir, K. S. Reddy, and T. K. Mallick, “Performance enhancement of a building-integrated concentrating photovoltaic system using phase change material,” Sol. Energy Mater. Sol. Cells, vol. 149, pp. 29–39, 2016. DOI: 10.1016/j.solmat.2015.12.035.
  • A. Hasan, H. Alnoman, and Y. Rashid, “Impact of integrated photovoltaic-phase change material system on building energy efficiency in hot climate,” Energy Build., vol. 130, pp. 495–505, 2016. DOI: 10.1016/j.enbuild.2016.08.059.
  • A. Al-Waeli, K. Sopian, H. A. Kazem, and M. T. Chaichan, “Photovoltaic/Thermal (PV/T) systems: Status and future prospects,” Renew. Sustain. Energy Rev., vol. 77, pp. 109–130, 2017. DOI: 10.1016/j.rser.2017.03.126.
  • M. A. Ezan, C. Yüksel, E. Alptekin, and A. Ylanc, “Importance of natural convection on numerical modelling of the building integrated PVP/PCM systems,” Sol. Energy, vol. 159, pp. 616–627, 2018. DOI: 10.1016/j.solener.2017.11.022.
  • S. Dubey, G. S. Sandhu, and G. N. Tiwari, “Analytical expression for electrical efficiency of PV/T hybrid air collector,” Appl. Energy, vol. 86, no. 5, pp. 697–705, 2009. DOI: 10.1016/j.apenergy.2008.09.003.
  • G. Mittelman, A. Alshare, and J. H. Davidson, “A model and heat transfer correlation for rooftop integrated photovoltaics with a passive air cooling channel,” Sol. Energy, vol. 83, no. 8, pp. 1150–1160, 2009. DOI: 10.1016/j.solener.2009.01.015.
  • M. J. Huang, P. C. Eames, and B. Norton, “The application of computational fluid dynamics to predict the performance of phase change materials for control of photovoltaic cell temperature in buildings,” World Renewable Energy Congress VI, 2000, pp. 2123–2126. DOI: 10.1016/B978-008043865-8/50454-2.
  • B. J. Brinkworth, “Optimum depth for PV cooling ducts,” Sol. Energy, vol. 80, no. 9, pp. 1131–1134, 2006. DOI: 10.1016/j.solener.2005.09.006.
  • M. Emam, S. Ookawara, and M. Ahmed, “Performance study and analysis of an inclined concentrated photovoltaic-phase change material system,” Sol. Energy, vol. 150, pp. 229–245, 2017. DOI: 10.1016/j.solener.2017.04.050.
  • A. Yadav and S. Samir, “Experimental and numerical investigation of spatiotemporal characteristics of thermal energy storage system in a rectangular enclosure,” J. Energy Storage, vol. 21, pp. 405–417, 2019. DOI: 10.1016/j.est.2018.12.005.
  • T. Sathe and A. S. Dhoble, “Thermal analysis of an inclined heat sink with finned PCM container for solar applications,” Int. J. Heat Mass Transf., vol. 144, pp. 118679, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118679.
  • D. Groulx and P. H. Biwole, “Solar PV passive temperature control using phase change materials,” International Heat Transfer Conference 15, 2014, pp. 8187–8201. DOI: 10.1615/IHTC15.tmg.008886.
  • T. Bunnag, J. Khedari, J. Hirunlabh, and B. Zeghmati, “Experimental investigation of free convection in an open-ended inclined rectangular channel heated from the top,” Int. J. Ambient Energy, vol. 25, no. 3, pp. 151–162, 2004. DOI: 10.1080/01430750.2004.9674954.
  • W. Puangsombut, J. Hirunlabh, J. Khedari, and B. Zeghmati, “An experimental study of free convection in an inclined rectangular channel using radiant barrier,” Exp. Heat Transf., vol. 20, no. 2, pp. 171–184, 2007. DOI: 10.1080/08916150601091514.
  • H. S. Yoon and J. Moon, “Effect of variable pitch on forced convection heat transfer around a helically twisted elliptic cylinder,” Int. J. Heat Mass Transf., vol. 173, no. 1, pp. 121205, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121205.
  • M. Sun et al., “Comparison of forced convective heat transfer between pillar and real foam structure under high Reynolds number,” Appl. Therm. Eng., vol. 182, pp. 116130, 2021. DOI: 10.1016/j.applthermaleng.2020.116130.
  • G. D. V. Davis and I. P. Jones, “Natural convection in a square cavity: A comparison exercise,” Int. J. Numer. Meth. Fluids, vol. 3, no. 3, pp. 227–248, 1983. DOI: 10.1002/fld.1650030304.
  • A. Nag, A. Sarkar, and V. M. K. Sastri, “Natural convection in a differentially heated square cavity with a horizontal partition plate on the hot wall,” Comput. Methods Appl. Mech. Eng., vol. 110, no. 12, pp. 143–156, 1993. DOI: 10.1016/0045-7825(93)90025-S.
  • A. Ben-Nakhi and A. J. Chamkha, “Effect of length and inclination of a thin fin on natural convection in a square enclosure,” Numer. Heat Transf., vol. 50, no. 4, pp. 381–399, 2006. DOI: 10.1080/10407780600619907.
  • A. Elatar, M. A. Teamah, and M. A. Hassab, “Numerical study of laminar natural convection inside square enclosure with single horizontal fin,” Int. J. Therm. Sci., vol. 99, pp. 41–51, 2016. DOI: 10.1016/j.ijthermalsci.2015.08.003.
  • A. Yldz, M. Arc, S. Nieti, and A. Shahsavar, “Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins,” Energy, vol. 207, pp. 118223, 2020. DOI: 10.1016/j.energy.2020.118223.
  • X. Shi and J. M. Khodadadi, “Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall,” J. Heat Transf., vol. 125, no. 4, pp. 624–634, 2003. DOI: 10.1115/1.1571847.
  • E. Bulut, E. İ. Albak, G. Sevilgen, and F. Öztürk, “A new approach for battery thermal management system design based on grey relational analysis and latin hypercube sampling,” Case Stud. Therm. Eng., vol. 28, pp. 101452, 2021. DOI: 10.1016/j.csite.2021.101452.
  • A. Kazemian, A. Parcheforosh, A. Salari, and T. Ma, “Optimization of a novel photovoltaic thermal module in series with a solar collector using Taguchi based grey relational analysis,” Sol. Energy, vol. 215, no. 2, pp. 492–507, 2021. DOI: 10.1016/j.solener.2021.01.006.
  • E. Jiaqiang et al., “Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis,” Energy, vol. 211, pp. 118596, 2020. DOI: 10.1016/j.energy.2020.118596.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.